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1.0 INTRODUCTION 

Currently agriculture stands as a fundamental worldwide sector because it sustains food 

security needs and produces crucial economic benefits as well as ensures rural 

population sustenance. Recent years have brought substantial difficulties to the 

agriculture sector because of population increase together with climate changes and 

water shortages in combination with non-sustainable farming methods. The pressing 

need for advanced technology has emerged because these obstacles require better 

productivity systems and sustainable food supply methods (Akkem et al., 2023). The 

agricultural industry confronts a fundamental issue when crop yields become 

challenging to predict due to different influencing elements including weather patterns 

and soil quality together with pesticide apex usage. Traditional approaches for 

predicting crop yields that depend on historical statistics and single variable analysis 

lose their ability to measure the multiple interacting elements thus creating wrong 

forecasts and poor resource allocation decisions. 

Many stakeholders suffer from various challenges stemming from unreliable crop yield 

prediction. Farmers face negative consequences when they fail to make accurate yield 

predictions because it leads to poor resource management and revenue loss together 

with diminished market and environmental shock defenses. Unreliable data interferes 

with policy planning and food distribution methods and agricultural policies created by 

government and policymakers. The irregularity of crop output creates supply chain 

performance problems for agribusiness operations as well as input supply businesses 

and food distribution networks. Global food market integration with agriculture creates a 



pressing need for data-based decisions which requires accurate crop yield prediction as 

a cornerstone of precision agriculture (Deepak Sinwar et al., 2019). 

Two modern tools named Artificial Intelligence (AI) alongside Machine Learning (ML) 

function as strong tools capable of handling complex yield predictions. The project 

develops an accurate predictive AI model for crop yield forecasting through supervised 

learning models including ensemble techniques Random Forest and XGBoost by 

analyzing historical data points for pesticide usage and temperature and rainfall records. 

The available dataset includes 28,000 rows along with extensive content that powers 

sound model development. The models succeed in finding complex non-linear behavior 

and multiple feature dependencies which standard statistical tools cannot reveal (Goel 

& Pandey, 2024a). 

This project combines black-box modeling with SHAP (SHapley Additive exPlanations) 

from the Explainable AI (XAI) family to both predict model results and provide 

explanations about model prediction justifications. The implementation of XAI brings 

transparency to AI systems because stakeholders in agriculture demand trust in 

decision-making processes which affect their basic life needs. Stakeholders gain 

complete understanding of feature contribution amounts through SHAP values since 

these values reveal how factors like rainfall and pesticide usage affect predicted crop 

yield results. 

Academic research and practical requirements equally support the basis of this project. 

The research by Kamilaris & Prenafeta-Boldú (2018) together with Singh et al. (2020) 

proves machine learning Deliver effective agricultural forecasting while stressing the 



need for interpretable models and diverse data sources. The project expands this 

research through the combination of various data sources followed by sophisticated 

model calibration while implementing XAI for delivering a complete solution. The project 

supports agricultural digital transformation initiatives through an adaptive model 

framework which works across diverse geographical areas and crop types (Faeze 

Behzadipour et al., 2023). 

The proposed research establishes an advanced AI system which addresses a critical 

agricultural issue in crop yield forecasting. The system actively resolves stakeholder 

problems and complies with worldwide guidelines for sustainable and intelligent 

agricultural practices. The research integrates explainable insights and powerful 

machine learning algorithms to create a system which enables data-based decision 

support and enhanced farm sector reliability. 

Objectives: 

• The development and optimization of machine learning models (Random Forest 

and XGBoost) used to predict crop yields from environmental and agricultural 

features. 

• The researcher performs analysis of key crop yield factors by executing data 

preprocessing and feature engineering in addition to statistical analysis. 

• To use Explainable AI techniques (SHAP and LIME) for understanding model 

predictions along with identifying which features most impact yield results. 

  



2.0 LITERATURE REVIEW 

The literature shows both advancements as well as a set of substantial obstacles 

despite recent progress. Two major obstacles exist in agricultural application of ML 

including limited access to clean agricultural data and inconsistencies in crop behavior 

across regions along with a lack of uniform evaluation methods and insufficient model 

interpretability. Research investigators work to unveil explainable AI techniques such as 

SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-Agnostic 

Explanations) for better understanding and trust in predictions done by black-box AI 

systems (Ramdinthara et al., 2021). 

2.1 The Role of Machine Learning in Crop Yield Prediction 

Modern agricultural forecasting receives powerful enhancements through machine 

learning (ML) by deriving crop yield predictions from data-driven algorithms. Linear 

regression and other statistical models served as traditional forecasting methods until 

2025 when Alzahrani et al. (2025) pointed out their failure to identify complex 

environmental and agronomic interrelations. Random Forests (RF) together with 

XGBoost and neural networks now serve as superior ML techniques because these 

models efficiently address non-linear relationships found in high-dimensional datasets 

(Alzahrani et al., 2025). Random Forest models serve as a popular tool in yield 

prediction because their strong resistance to overfitting eliminates issues and their 

feature importance ranking ability provides valuable information to users. XGBoost has 

established itself as a popular tool because it effectively deals with missing data 

alongside gradient boosting for predictive accuracy optimization (Kumar et al., 2024). 

Convolutional Neural Networks (CNNs) belong to the deep learning category and they 



can process yield data using satellite imagery to produce large-scale predictions. The 

major drawback of such models is their closed-box operation which limits transparency 

and reduces trust among farmers together with policymakers. XAI techniques have 

gained increasing demand since they provide interpretability to ML models while 

preserving accuracy levels (S. K. B. et al., 2024). 

2.2 Challenges in Traditional Crop Yield Forecasting Methods 

Modern agricultural forecasting receives powerful enhancements through machine 

learning (ML) by deriving crop yield predictions from data-driven algorithms. Linear 

regression and other statistical models served as traditional forecasting methods until 

2015 when van Klompenburg et al. (2020) pointed out their failure to identify complex 

environmental and agronomic interrelations. Random Forests (RF) together with 

XGBoost and neural networks now serve as superior ML techniques because these 

models efficiently address non-linear relationships found in high-dimensional datasets 

(van Klompenburg et al., 2020). Random Forest models serve as a popular tool in yield 

prediction because their strong resistance to overfitting eliminates issues and their 

feature importance ranking ability provides valuable information to users (Siddiqa et al., 

2024). XGBoost has established itself as a popular tool because it effectively deals with 

missing data alongside gradient boosting for predictive accuracy optimization (Sharma 

et al., 2022). Convolutional Neural Networks (CNNs) belong to the deep learning 

category and they can process yield data using satellite imagery to produce large-scale 

predictions (Shvets et al., 2023). The major drawback of such models is their closed-

box operation which limits transparency and reduces trust among farmers together with 

policymakers. XAI techniques have gained increasing demand since they provide 



interpretability to ML models while preserving accuracy levels (Mosleh Hmoud Al-

Adhaileh & Theyazn H.H. Aldhyani, 2022). 

2.3 Explainable AI (XAI) Techniques for Agricultural Decision-Making 

Explainable AI (XAI) techniques emerged because of uninterpretable ML models to help 

stakeholders understand and develop trust in predictions. The agricultural sector 

employs SHAP and LIME as its two main XAI techniques (SHapley Additive 

exPlanations coupled with Local Interpretable Model-agnostic Explanations). Through 

game theory principles SHAP provides quantitative measurements about how each 

feature influences predictive outcomes (Sharma & Rathore, 2024). A SHAP analysis 

demonstrates that temperature fluctuations cause the most significant impact on wheat 

yield therefore farmers can effectively plan their climate adaptation strategies. When 

making individual predictions LIME applies simpler interpretable models to approximate 

the complex model framework. Agronomists benefit from using these tools because 

they provide specific explanations about which farms deviate from yield prediction 

norms. The visualization of model behavior can be achieved through two interpretability 

techniques known as Partial Dependence Plots (PDPs) and Feature Importance Scores 

according to Lykhovyd et al. (2023) XAI tools provide multiple advantages to 

stakeholders yet encounter troubleshooting related to high-level data processing and 

create user-friendly interfaces needed by non-expert users. Additional investigation 

should work towards integrating XAI functions into farm management systems for 

practical decision support capabilities (Lykhovyd et al., 2023). 



2.4 Review of Related Literature 

Ravi and Baranidharan (2020) applied XGBoost models to predict wheat yields under 

variable climatic conditions in India. Their RF model achieved an R² score of 0.9391 and 

an RMSE of 150 kg/ha, outperforming traditional regression models. The study 

confirmed that ensemble models offer strong predictive capabilities for cereal crops, 

especially when handling heterogeneous environmental datasets (Ravi & Baranidharan, 

2020). 

Jhajharia et al. (2023) implemented Random Forest, Support Vector Machine (SVM), 

Gradient Descent, Long Short-Term Memory (LSTM) networks, and Lasso Regression 

models. Among these, the Random Forest model achieved the highest performance 

with an R² score of 0.963, a Root Mean Squared Error (RMSE) of 0.035, and a Mean 

Absolute Error (MAE) of 0.0251. Model validation was carried out using cross-validation 

techniques to ensure generalization performance. The study highlighted the Random 

Forest model’s superior ability to capture complex, nonlinear relationships in the 

agricultural dataset (Jhajharia et al., 2023). 

Agriculture plays a critical role in the economy and survival, with crop yield prediction 

being a complex task influenced by factors such as water, UV exposure, pesticides, 

fertilizers, and land area. Haque et al. (2020) proposed the use of two Machine Learning 

algorithms, Support Vector Regression (SVR) and Linear Regression (LR), to predict 

crop yield based on these parameters. The study used a dataset of 140 data points and 

evaluated the models using Mean Square Error (MSE) and Coefficient of Determination 

(R²), achieving an MSE of approximately 0.005 and an R² value of around 0.85. The 



comparison between these algorithms provided insights into their performance for 

predicting crop yield (Haque et al., 2020). 

Food security remains a significant issue, particularly in many African regions. Kaneko 

et al. (2019) used deep learning techniques on satellite imagery to predict maize yields 

at the district level in six African countries, marking the first attempt of its kind in Africa. 

The model's performance varied significantly between countries, achieving an average 

R² of 0.56 in predicting recent yields. The study also explored the use of transfer 

learning, demonstrating that data from other countries can help improve yield 

predictions in data-sparse regions (Kaneko et al., 2019). 

2.4.1 Summary of Literature Survey 

The summary of the literature survey is show in table below: 

Table 2.1: summary of the literature survey 

Authors/Year Method Used Aim Drawback 

Ravi & 

Baranidharan 

(2020) 

XGBoost Predict wheat yields 

under variable climatic 

conditions in India. 

Limited to wheat and 

environmental variables; 

may not generalize to 

other crops. 

Jhajharia et al. 

(2023) 

Random Forest, 

SVM, Gradient 

Descent, LSTM, 

Lasso Regression 

Compare performance 

of various ML models 

in predicting crop 

yield. 

Only the Random Forest 

model is highlighted; 

other models' 

performance not fully 



explored. 

Haque et al. 

(2020) 

Support Vector 

Regression 

(SVR), Linear 

Regression (LR) 

Predict crop yield 

based on factors such 

as water, UV, 

pesticides, fertilizers, 

and land area. 

Dataset size of 140 

points may limit 

generalization; focused 

only on SVR and LR. 

Kaneko et al. 

(2019) 

Deep Learning on 

Satellite Imagery 

Predict maize yields in 

six African countries 

using satellite imagery 

and transfer learning. 

Performance varies 

significantly by country; 

transfer learning may 

not always apply. 

 

  



3.0 METHODOLOGY 

A predictive system for crop yield assessment through machine learning methods 

requires this section to explain its structured development framework. The framework 

combines the components of data selection along with data cleaning techniques with 

model building phases and XAI and generative AI functionalities. This project relies on 

the Design Science Research Methodology (DSRM) to create systematic artifacts that 

evaluate real-world problem solutions for effective problem-solving. The following 

subsections detail essential stages of the method that maintain open evaluation 

opportunities and academic research quality standards. 

3.1 Dataset Collection 

The research utilized crop yield data from open-source Kaggle platform provided by 

Mohsin Shareef under the title "Crop Yield Prediction". The available dataset consists of 

28,243 rows to provide a sufficient capacity for training and validating machine learning 

models. The dataset contains multiple characteristics that impact crop yield through 

their measurement units of average rainfall (mm) and temperature (Celsius) and 

pesticide usage (in tonnes) and Item and Area categories. The dataset contains 

features which match confirmed agronomic yields factors as outlined by Patel (2021) 

research (Patel, 2021). 

Table 3.1: Dataset Feature Description 

Feature Name Feature Description 

Area The geographical region or country where the crop 



data was recorded. 

Item The specific type of crop (e.g., wheat, maize, rice) 

being measured. 

Year The calendar year during which the crop yield and 

environmental data were recorded. 

hg/ha_yield Crop yield measured in hectograms per hectare 

(hg/ha), indicating productivity. 

average_rain_fall_mm_per_year The average annual rainfall in the region, measured 

in millimeters. 

pesticides_tonnes Total amount of pesticides used in the region during 

the year, measured in tonnes. 

avg_temp The average annual temperature in the region, 

measured in degrees Celsius. 

 

Three vital factors exist for choosing this dataset. The data addresses fundamental food 

security matters which directly affect agricultural sustainability during climate change 

adaptation efforts. Secondly the dataset contains multiple features which enables 

researchers to create multivariable predictive models. The dataset demonstrates 

excellence in multiple dimensions since it contains ample data points for proper training 



with accurate annotations and minimal data gaps which renders it suitable for 

dependable predictive functions. 

3.2 Data Preprocessing 

Any machine learning process starts with data preprocessing which determines how 

well the model performs and what accuracy level it reaches and how well it adapts to 

new information. The preprocessing facility included data cleaning along with variable 

encoding and feature scaling techniques and train-test splitting procedures as well as 

XAI model interpretability preparations. 

3.2.1 Data Cleaning and Column Removal 

This original dataset included multiple features namely "Area", "Item", "Year", 

"hg/ha_yield", "average_rain_fall_mm_per_year", "pesticides_tonnes" and "avg_temp". 

The model-building process required elimination of the "Year" feature since it proved 

non-essential for examining crop yield impact based on environmental factors and 

regional elements. The researchers omitted temporal data points for this study to focus 

on environmental effects versus time-based themes so they could examine regional 

agricultural trends. Removing this feature minimized both multicollinearity risks and the 

complexity of the model structure. 

3.2.2 Encoding Categorical Variables 

The categorical features “Area” and “Item” demanded suitable numeric transformation 

since machine learning models require numeric data. The One-Hot Encoding process 

was applied through the OneHotEncoder class from scikit-learn. One-Hot Encoding 

serves as a common methodology to turn categories into binary patterns which enable 



model interpretation without assuming order relations between the input values. The 

technique prevented the dummy variable trap through column dropping (parameter 

'drop='first') in each encoding. 

The converted data received DataFrame format to unite with numerical features for 

developing an extensive feature matrix. The data transformation maintained important 

original data patterns between Area regions and Item agriculture types for use during 

model training functions. 

3.2.3 Feature Scaling 

Average rainfall (in millimeters) and pesticide usage (in tonnes) and average 

temperature (in Celsius) made up the numeric features with varying magnitude. Larger 

magnitude features have the potential to control training outcomes when normalization 

techniques are absent. Application of StandardScaler from scikit-learn achieved the 

normalization of these numerical features. Standardization alters data values to obtain 

both a zero mean and a standard deviation value of 1 thus generating normalized 

features in the space. Distance-based algorithms and ensemble models with decision 

trees require this step because they depend on feature distribution for tree construction. 

3.2.4 Train-Test Splitting 

The model's performance evaluation depended on the data split into training and testing 

sets according to an 80:20 ratio through scikit-learn's train_test_split function. An 

independent evaluation of model generalization for new data points became possible 

through this separation method. Random_state parameter implementation created 



reproducible results since it established consistent outcomes when re-running the 

analysis. 

The project adopted stratified sampling for classification work but applied equivalent 

representation methods for the regression analysis to keep training and test samples 

equivalent to the entire data population. The distribution of underlying patterns between 

regions and crop types throughout the data was properly dispersed to reduce sampling 

bias. 

3.2.5 Data Summary and Statistical Overview 

The pandas’ describe () method computed standard preprocessing validity measures 

through descriptive statistics including mean, standard deviation, minimum, and 

maximum numerical values. A visual exploratory analysis was performed as part of the 

evaluation. A heatmap displayed numbers to identify specific relationships between 

features thus helping detect multicollinearity within the data. The distribution of target 

variable (hg/ha_yield) emerged through distribution plots as well as boxplots throughout 

different crops revealed distributional characteristics and data variability. 

3.3 Algorithms Used 

The development of the predictive model used Random Forest and XGBoost as two 

advanced supervised machine learning algorithms. Due to their demonstrated 

capabilities with non-linear high-dimensional information while requiring minimal 

preprocessing efforts these algorithms were chosen. The algorithms went through 

optimization with GridSearchCV before their evaluation through RMSE and R² metrics. 



 

3.3.1 Random Forest Classifier 

Random Forest builds several decision trees in training and uses their averaged 

predictions as the final outcome. The method helps decrease the chances of overfitting 

while enhancing generalization capabilities. The implementation relied on the 

RandomForestRegressor module available in scikit-learn framework. The testing 

involved a 5-fold cross-validation procedure where the four mentioned hyperparameters 

adjusted across a predefined parameter grid. 

SHAP alongside LIME served as components for interpretability enhancement through 

integration into the system. SHAP enabled visual representation of global importance 

analysis which found average rainfall together with pesticide usage as the most 

significant influencing variables. Through local explanations LIME used linear models 



surrounding specific prediction points to provide stakeholders better model transparency 

and understanding (Ramzan et al., 2024). 

3.3.2 XGBoost Classifier 

XGBoost represents a fast and precise screwable regularized boosting algorithm for 

which speed and accuracy are characteristics. XGBoost executes tree boosting 

sequentially while adding regularizers that stop overfitting. XGBRegressor from xgboost 

library operated with learning_rate and max_depth and n_estimators and subsample 

parameters optimized by GridSearchCV (Rashid et al., 2021). 

 

Figure 3.1: Overall architecture of crop yield prediction system 

Feature importance rankings matched between XGBoost and SHAP when these 

interpretability methods were applied to the XGBoost model to ensure consistency 

across different analytical models. The LIME explanations received formatting in HTML 

format to serve as visual aids in the final report which provided domain experts with 

clear representations. 



Throughout the project lifecycle the project adhered to Design Science Research 

Methodology (DSRM) principles. The six fundamental activities within DSRM which start 

with problem identification and end with objectives definition and design and 

development followed by demonstration and evaluation and concluding with 

communication were performed systematically. Unpredictable yields in agriculture 

presented the main issue which needed resolution. The project established specific 

objectives which aimed to increase predictive accuracy together with procedure 

transparency. The project executed model development and demonstrations after 

conducting thorough evaluations with XAI techniques. The research findings will be 

analyzed based on published literature before publishing them through this detailed 

report. 



 

Figure 3.2: Schematic of proposed research method 

Investigators should use generative AI to expand the framework by extending data 

augmentation to crops and regions which lack solid representation. GANs and 



transformer-based models create synthetic tabular data which expands datasets while 

minimizing model biases and creating better generalization abilities. Generative AI 

systems will become part of the project framework as the next development stage 

despite their absence from this version. 

The proposed methodological framework linked strong machine learning models with 

interpretability tools to scientific rigor under the DSRM framework to create an effective 

crop yield prediction system. The upcoming section provides details about analytics 

alongside research findings which include results gathered from the implemented 

models. 

  



4.0 ANALYSIS AND FINDINGS 

A deep analysis of the dataset contains exploratory data analysis (EDA) to understand 

the distribution of the variables, the relationships between them, and the overall 

characteristics of the dataset. The initial examination of data revealed significant 

information about how the variables rainfall, temperature and pesticide usage relate to 

crop yield distribution. The data analysis included summary statistics together with 

correlation heatmaps identifying rainfall and temperature as main yield predictors while 

boxplots displayed yield differences per crop species. Models based on Random Forest 

and XGBoost received training through assessment of the performance metrics RMSE 

and R². XGBoost provided superior predictive capabilities than Random Forest in their 

evaluation. The research utilized Explainable AI tools SHAP and LIME for model 

behavior interpretation to obtain global and local insights about feature importance. 

Summary plots from SHAP demonstrated that average temperature together with 

rainfall serve as main determinants for producing yields yet LIME delivered plain 

explanations regarding single prediction results. The use of GridSearchCV for 

hyperparameter tuning resulted in better model performance because the chosen 

parameters came from cross-validation results. The analysis demonstrates that 

machine learning approaches along with interpretability techniques succeed effectively 

for agricultural yield prediction purposes. 

4.1 Exploratory Data Analysis (EDA) 

The dataset contains 28,242 records and 6 fields of which 4 fields represent numerical 

data with 'hg/ha_yield' (crop yield), 'average_rain_fall_mm_per_year' (rainfall), 

'pesticides_tonnes' (pesticides used) and 'avg_temp' (temperature). The target variable 



'hg/ha_yield' distributes its data with a mean value of 77,053 hg/ha and a standard 

deviation of 84,957 while spanning between 50 to 501,412 hg/ha. The yield distribution 

shows positive skewness because the 25th, 50th, and 75th percentiles stand at 19,919 

and 38,295 and 104,676 hg/ha. 

 

Annual rainfall in the region stands at 1,149 mm whereas the data points spread 

between 51 to 3,240 mm while the standard deviation measures 710 mm. Pesticides 

outreach shows an average figure of 37,076 tonnes spanning from 0.04 to 367,778 

tonnes. The average temperature in this region measures 20.54 degrees Celsius across 

1.3°C to 30.65°C variations while displaying a standard deviation value of 6.31 degrees 

Celsius. 

 

Temperature showed a moderate positive relationship with yield according to the 

generated correlation heatmap. Yield demonstrated a weak inverse relationship with 

rainfall data but pesticide application created a low or medium positive correlation to 

yield data. 



 

Figure 4.1: Analysis of Correlation Heatmap 

The target variable distribution for 'hg/ha_yield' was displayed through a histogram 

together with KDE (kernel density estimate) plot visualization. The visual display of 

distribution showed extensive skewness to the right side along with the majority of yield 

data points located beneath the mean value of 77,000 hg/ha. The histogram shows 

extensive tailing in the higher end values for hg/ha_yield which indicates there are 

outliers among the regions or crops. The right-skewed data requires models that can 

efficiently process such distributions. 

 



The distribution plot verifies statistical data by showing the concentration of most 

samples between lower-to-mid yield values along with infrequent instances of 

exceptional high output. 

 

Figure 4.2: Distribution of the target variable 

The boxplot analysis conducted for crop yields (hg/ha_yield) by 'Item' crop types 

exposed important patterns in yield data distribution. The crop yield data for maize and 

sugarcane showed solid results with their median point near the average value and 

minimized range between highest and lowest values indicating reliable productive 

results. 



 

 

Figure 4.3: Yield Distribution by Crop Type using Box Plot 

The yield outcomes for pulses and root vegetables showed extensive variability 

because of their wide interquartile ranges together with several outlier values. Specific 

environmental conditions make certain crops demonstrate both stability and resilience 

which requires predictive models to have targeted approaches. Crop-specific 

forecasting requires isolating yield data by type since current methods demonstrate 

inconsistent accuracy in predicting different agricultural produce outcomes. 



4.2 Predictive Modeling Results 

4.2.1 Model Performance Metrics 

The Random Forest (RF) and XGBoost models reached predictive results based on the 

Root Mean Squared Error (RMSE) and R² (Coefficient of Determination) metrics.  

 

The Random Forest model displayed perfect data fit to the test data as reflected by its 

13,523.369 RMSE and 0.975 R² score. The model predicts the variances in the crop 

yield to 97.5% accuracy since its prediction errors remain small. Absolute prediction 

errors from XGBoost reached 18,906.770 while its R² value measured 0.951 indicating 

95.1% variance explanation. The Random Forest model outperformed the competition 

through its accurate results which included a lower RMSE and higher R² than the other 

model suggesting it should be selected for this dataset. 

The Actual vs. Predicted scatter plot confirmed model performance evaluation.  



 

Most predictions from the model fall alongside the 45-degree reference line which 

demonstrates that observed and predicted yields match well.  

 

Figure 4.4: Actual vs Predicted Crop Yield 

The dispersion levels of XGBoost predictions increased as the yield values grew while 

maintaining some minor estimation errors at the extreme range. Random Forest 

predictions followed a tighter pattern surrounding the reference line that indicates its 

superior accuracy. 



 

Figure 4.5: Distribution of Residuals by Algorithms 

A tabular summary of model performance is provided below: 

Table 4.1: Classifier Performance Evaluation 

Model RMSE R² 

Random Forest 13,523.369 0.975 

XGBoost 18,906.770 0.951 

The data verifies that Random Forest achieved better performance than XGBoost 

regarding error reduction and variable interpretation. 



4.2.2 Cross-Validation Results 

The model reliability and overfitting prevention required five-fold cross-validation (CV) 

implementation.  

 

Random Forest reached mean R² performance of 0.974 ± 0.003 and XGBoost obtained 

an R² value of 0.948 ± 0.006. Each model displays consistent performance results 

because their standard deviations measure ±0.003 for RF and ±0.006 for XGBoost 

across multiple data split variations. 

 

Figure 4.6: 5-Fold Cross-Validation Performance 



Random Forest displayed better stability by presenting both improved average R² 

values and diminished variance levels than XGBoost did. Random Forest provides 

better generalization capabilities for unseen data which makes it an optimal selection for 

real-world applications. XGBoost shows slightly higher performance variation which 

might result from sensitive parameters or data difficulties. 

Key Takeaways: 

1. Random Forest achieves the best prediction results because it possesses both 

the minimal RMSE (13,523.369) and the highest R² (0.975). 

2. The validation through cross-validation technique reveals stable performance 

because the two models demonstrate small variations in their metrics when 

tested across different folds of data. 

3. The prediction accuracy of XGBoost remains robust although it generates inferior 

consistency results when evaluating extremely high yield levels compared to 

Random Forest models. 

The research findings indicate Random Forest should lead crop yield prediction in this 

situation since it demonstrates high accuracy alongside reliable stability. Further 

hyperparameter optimization makes XGBoost an effective alternative especially when 

applied in this context. 

Table 4.2: Cross-Validation Performance 

Model Mean CV R² Standard Deviation 



Random Forest 0.974 ±0.003 

XGBoost 0.948 ±0.006 

 

4.3 Explainable AI (XAI) Interpretability (SHAP & LIME) 

4.3.1 SHAP Interpretability 

The SHAP (SHapley Additive exPlanations) summary plot features a wide view of 

feature effects on model predictions throughout all data points. The summary plot 

arranges variable mean absolute SHAP values from most to least important for 

predicting crop yield. The plot determines "Item_Potatoes" as the leading influential 

feature and subsequently identifies "Item_Rice, paddy" and "Item_Maize" as the 

subsequent key elements.  

 

Frankenstein_predict emphasizes the impact of crop kinds above all other variables for 

forecast accuracy according to agronomic science principles since each species 

demonstrates individual yield potentials shaped by genetic structure and growth timeline 

and climatic factors. 

 



 

Figure 4.7: SHAP analysis for different parameters 

Two key aspects "average_rain_fall_mm_per_year" alongside "pesticides_tonnes" 

feature lower in the rating scale yet continue to affect production results of the crops. 



Production levels of crops show peculiar behavior to rainfall variations since dry 

conditions and extreme water levels induce the same type of crop damage. The amount 

of pesticides activated through "pesticides_tonnes" shows positive correlation with 

agricultural yield improvements by maintaining proper pest control standards. The 

SHAP values for "Area_Egypt" and "Area_Canada" show lower influence compared to 

other variables which indicates spatial characteristics influence yield less than specific 

crop and environmental variables. These analytic findings could assist governmental 

agencies in making better policy selections which emphasize developing better crop 

types along with irrigation optimization rather than only focusing on location-based 

approaches.  

 

The SHAP force plot served to study one instance of prediction analysis at an individual 

level. The plot shows the individual impact each feature played on the yield prediction 

generated for a particular farm. This prediction from the model indicated that the yield 

would reach 25,000 hg/ha above the average value. The main feature increase of 

+5000 hg/ha came from "avg_temp" at 20 °C because this condition delivered suitable 

maize cultivation conditions. The combined use of 0.5 tonnes in pest control led to an 

increase of 3,000 hg/ha in yield performance. The average rainfall measure (600 mm) 

caused a reduction in the predicted yield level by -1,500 hg/ha because low rainfall 

amounts stress crop health. 



By performing this analysis decision-makers receive applications that help farmers 

alongside agronomists and representatives in making wise choices. Farmers who 

access these insights should use them to modify their operational methods by installing 

irrigation systems when rainfall falls below average. Sanctioned authorities together with 

agronomists now have the tool to recognize field-specific yield restraining elements 

while public servants adjust support programs for drought-tolerant seeds across 

wetness-stressed zones. 

  



5.0 DISCUSSION 

The research accomplished the implementation of machine learning (ML) with 

Explainable AI (XAI) methods to forecast crop yields that generated essential 

agricultural information for stakeholders. EDA results showed three primary findings in 

the data including yield distributions that skewed to the right and major differences 

between crops along with minor relationships between rainfall and temperature 

parameters and agricultural outputs. Random Forest (RF) surpassed XGBoost as the 

ideal predictive model through achieving 13,523.369 RMSE and 0.975 R² while 

demonstrating near-perfect accuracy. The reliability of Random Forest (RF) was 

confirmed by cross-validation through its attainment of a mean R² value at 0.974 ± 

0.003 which demonstrated its durability across different data divisions. 

The implementation of XAI tools showed that crop type along with temperature and 

pesticide usage explained the model predictions with crop type being the primary 

influencing factor. The SHAP global analysis pinpointed widespread patterns throughout 

the whole dataset but local force plots delivered site-specific practical insights which 

showed that temperatures at 20°C increased crop yields while inadequate 600 mm 

rainfall reduced productivity. The obtained information enables farmers to enhance their 

irrigation practices along with allowing agronomists and policymakers to recommend 

appropriate resource allocations. 

5.1 Limitations and Future Recommendations 

The study focused on limited variables rainfall, temperature, and pesticide usage 

excluding important factors like soil quality and farming practices. The dataset’s right-



skewed distribution and presence of outliers affected model consistency, particularly for 

extreme yield values. While Explainable AI tools improved interpretability, their 

complexity may limit accessibility for non-expert users. Additionally, models were 

trained on historical data, limiting their adaptability to real-time climate changes. 

Future research should include more diverse features such as soil health, crop 

management data, and real-time environmental inputs. Advanced preprocessing 

methods should address skewness and outliers. Integrating temporal data and using 

generative AI could improve model robustness. Simplifying explainable outputs into 

user-friendly platforms and developing lightweight models for real-time predictions 

would make these solutions more practical for farmers and policymakers. 

5.2 Reflection 

Reviews of analyzed studies demonstrate that deep learning and machine learning 

processes have revolutionized crop yield prediction through their ability to extract 

sophisticated relationships between agricultural elements. Both Random Forest and 

XGBoost demonstrate robust predictive power yet researchers must address essential 

barriers such as missing data and regional dispersal of agricultural patterns alongside 

model universal adoption issues. Future scholarship in this field shows promise through 

the combination of transfer learning and explainable AI techniques. Continual innovation 

serves as an essential factor for developing scalable accurate accessible solutions that 

deliver benefits to farmers and protect global food security. 
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Appendix 

Dataset Link: 

https://www.kaggle.com/datasets/patelris/crop-yield-prediction-dataset/code 
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