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1.0 INTRODUCTION

Currently agriculture stands as a fundamental worldwide sector because it sustains food
security needs and produces crucial economic benefits as well as ensures rural
population sustenance. Recent years have brought substantial difficulties to the
agriculture sector because of population increase together with climate changes and
water shortages in combination with non-sustainable farming methods. The pressing
need for advanced technology has emerged because these obstacles require better
productivity systems and sustainable food supply methods (Akkem et al., 2023). The
agricultural industry confronts a fundamental issue when crop vyields become
challenging to predict due to different influencing elements including weather patterns
and soil quality together with pesticide apex usage. Traditional approaches for
predicting crop yields that depend on historical statistics and single variable analysis
lose their ability to measure the multiple interacting elements thus creating wrong

forecasts and poor resource allocation decisions.

Many stakeholders suffer from various challenges stemming from unreliable crop yield
prediction. Farmers face negative consequences when they fail to make accurate yield
predictions because it leads to poor resource management and revenue loss together
with diminished market and environmental shock defenses. Unreliable data interferes
with policy planning and food distribution methods and agricultural policies created by
government and policymakers. The irregularity of crop output creates supply chain
performance problems for agribusiness operations as well as input supply businesses

and food distribution networks. Global food market integration with agriculture creates a



pressing need for data-based decisions which requires accurate crop yield prediction as

a cornerstone of precision agriculture (Deepak Sinwar et al., 2019).

Two modern tools named Atrtificial Intelligence (Al) alongside Machine Learning (ML)
function as strong tools capable of handling complex yield predictions. The project
develops an accurate predictive Al model for crop yield forecasting through supervised
learning models including ensemble techniqgues Random Forest and XGBoost by
analyzing historical data points for pesticide usage and temperature and rainfall records.
The available dataset includes 28,000 rows along with extensive content that powers
sound model development. The models succeed in finding complex non-linear behavior
and multiple feature dependencies which standard statistical tools cannot reveal (Goel

& Pandey, 2024a).

This project combines black-box modeling with SHAP (SHapley Additive exPlanations)
from the Explainable Al (XAl) family to both predict model results and provide
explanations about model prediction justifications. The implementation of XAl brings
transparency to Al systems because stakeholders in agriculture demand trust in
decision-making processes which affect their basic life needs. Stakeholders gain
complete understanding of feature contribution amounts through SHAP values since
these values reveal how factors like rainfall and pesticide usage affect predicted crop

yield results.

Academic research and practical requirements equally support the basis of this project.
The research by Kamilaris & Prenafeta-Boldu (2018) together with Singh et al. (2020)

proves machine learning Deliver effective agricultural forecasting while stressing the



need for interpretable models and diverse data sources. The project expands this
research through the combination of various data sources followed by sophisticated
model calibration while implementing XAl for delivering a complete solution. The project
supports agricultural digital transformation initiatives through an adaptive model
framework which works across diverse geographical areas and crop types (Faeze

Behzadipour et al., 2023).

The proposed research establishes an advanced Al system which addresses a critical
agricultural issue in crop yield forecasting. The system actively resolves stakeholder
problems and complies with worldwide guidelines for sustainable and intelligent
agricultural practices. The research integrates explainable insights and powerful
machine learning algorithms to create a system which enables data-based decision

support and enhanced farm sector reliability.

Objectives:

e The development and optimization of machine learning models (Random Forest
and XGBoost) used to predict crop yields from environmental and agricultural
features.

e The researcher performs analysis of key crop yield factors by executing data
preprocessing and feature engineering in addition to statistical analysis.

e To use Explainable Al techniques (SHAP and LIME) for understanding model

predictions along with identifying which features most impact yield results.



2.0 LITERATURE REVIEW

The literature shows both advancements as well as a set of substantial obstacles
despite recent progress. Two major obstacles exist in agricultural application of ML
including limited access to clean agricultural data and inconsistencies in crop behavior
across regions along with a lack of uniform evaluation methods and insufficient model
interpretability. Research investigators work to unveil explainable Al techniques such as
SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-Agnostic
Explanations) for better understanding and trust in predictions done by black-box Al

systems (Ramdinthara et al., 2021).

2.1 The Role of Machine Learning in Crop Yield Prediction

Modern agricultural forecasting receives powerful enhancements through machine
learning (ML) by deriving crop yield predictions from data-driven algorithms. Linear
regression and other statistical models served as traditional forecasting methods until
2025 when Alzahrani et al. (2025) pointed out their failure to identify complex
environmental and agronomic interrelations. Random Forests (RF) together with
XGBoost and neural networks now serve as superior ML techniques because these
models efficiently address non-linear relationships found in high-dimensional datasets
(Alzahrani et al.,, 2025). Random Forest models serve as a popular tool in yield
prediction because their strong resistance to overfitting eliminates issues and their
feature importance ranking ability provides valuable information to users. XGBoost has
established itself as a popular tool because it effectively deals with missing data
alongside gradient boosting for predictive accuracy optimization (Kumar et al., 2024).

Convolutional Neural Networks (CNNs) belong to the deep learning category and they



can process Yyield data using satellite imagery to produce large-scale predictions. The
major drawback of such models is their closed-box operation which limits transparency
and reduces trust among farmers together with policymakers. XAl techniques have
gained increasing demand since they provide interpretability to ML models while

preserving accuracy levels (S. K. B. et al., 2024).

2.2 Challenges in Traditional Crop Yield Forecasting Methods

Modern agricultural forecasting receives powerful enhancements through machine
learning (ML) by deriving crop yield predictions from data-driven algorithms. Linear
regression and other statistical models served as traditional forecasting methods until
2015 when van Klompenburg et al. (2020) pointed out their failure to identify complex
environmental and agronomic interrelations. Random Forests (RF) together with
XGBoost and neural networks now serve as superior ML techniques because these
models efficiently address non-linear relationships found in high-dimensional datasets
(van Klompenburg et al., 2020). Random Forest models serve as a popular tool in yield
prediction because their strong resistance to overfitting eliminates issues and their
feature importance ranking ability provides valuable information to users (Siddiga et al.,
2024). XGBoost has established itself as a popular tool because it effectively deals with
missing data alongside gradient boosting for predictive accuracy optimization (Sharma
et al.,, 2022). Convolutional Neural Networks (CNNs) belong to the deep learning
category and they can process yield data using satellite imagery to produce large-scale
predictions (Shvets et al., 2023). The major drawback of such models is their closed-
box operation which limits transparency and reduces trust among farmers together with

policymakers. XAl techniques have gained increasing demand since they provide



interpretability to ML models while preserving accuracy levels (Mosleh Hmoud Al-

Adhaileh & Theyazn H.H. Aldhyani, 2022).

2.3 Explainable Al (XAl) Techniques for Agricultural Decision-Making

Explainable Al (XAl) techniques emerged because of uninterpretable ML models to help
stakeholders understand and develop trust in predictions. The agricultural sector
employs SHAP and LIME as its two main XAl techniques (SHapley Additive
exPlanations coupled with Local Interpretable Model-agnostic Explanations). Through
game theory principles SHAP provides quantitative measurements about how each
feature influences predictive outcomes (Sharma & Rathore, 2024). A SHAP analysis
demonstrates that temperature fluctuations cause the most significant impact on wheat
yield therefore farmers can effectively plan their climate adaptation strategies. When
making individual predictions LIME applies simpler interpretable models to approximate
the complex model framework. Agronomists benefit from using these tools because
they provide specific explanations about which farms deviate from yield prediction
norms. The visualization of model behavior can be achieved through two interpretability
techniques known as Partial Dependence Plots (PDPs) and Feature Importance Scores
according to Lykhovyd et al. (2023) XAl tools provide multiple advantages to
stakeholders yet encounter troubleshooting related to high-level data processing and
create user-friendly interfaces needed by non-expert users. Additional investigation
should work towards integrating XAl functions into farm management systems for

practical decision support capabilities (Lykhovyd et al., 2023).



2.4 Review of Related Literature

Ravi and Baranidharan (2020) applied XGBoost models to predict wheat yields under
variable climatic conditions in India. Their RF model achieved an R? score of 0.9391 and
an RMSE of 150 kg/ha, outperforming traditional regression models. The study
confirmed that ensemble models offer strong predictive capabilities for cereal crops,
especially when handling heterogeneous environmental datasets (Ravi & Baranidharan,

2020).

Jhajharia et al. (2023) implemented Random Forest, Support Vector Machine (SVM),
Gradient Descent, Long Short-Term Memory (LSTM) networks, and Lasso Regression
models. Among these, the Random Forest model achieved the highest performance
with an R2 score of 0.963, a Root Mean Squared Error (RMSE) of 0.035, and a Mean
Absolute Error (MAE) of 0.0251. Model validation was carried out using cross-validation
techniques to ensure generalization performance. The study highlighted the Random
Forest model’s superior ability to capture complex, nonlinear relationships in the

agricultural dataset (Jhajharia et al., 2023).

Agriculture plays a critical role in the economy and survival, with crop yield prediction
being a complex task influenced by factors such as water, UV exposure, pesticides,
fertilizers, and land area. Haque et al. (2020) proposed the use of two Machine Learning
algorithms, Support Vector Regression (SVR) and Linear Regression (LR), to predict
crop yield based on these parameters. The study used a dataset of 140 data points and
evaluated the models using Mean Square Error (MSE) and Coefficient of Determination

(R?), achieving an MSE of approximately 0.005 and an R2 value of around 0.85. The



comparison between these algorithms provided insights into their performance for

predicting crop yield (Haque et al., 2020).

Food security remains a significant issue, particularly in many African regions. Kaneko

et al. (2019) used deep learning techniques on satellite imagery to predict maize yields

at the district level in six African countries, marking the first attempt of its kind in Africa.

The model's performance varied significantly between countries, achieving an average

R2 of 0.56 in predicting recent yields. The study also explored the use of transfer

learning, demonstrating that data from other countries can help improve vyield

predictions in data-sparse regions (Kaneko et al., 2019).

2.4.1 Summary of Literature Survey

The summary of the literature survey is show in table below:

Table 2.1: summary of the literature survey

Authors/Year Method Used

Aim

Drawback

Ravi & | XGBoost
Baranidharan

(2020)

Predict wheat yields
under variable climatic

conditions in India.

Limited to wheat and
environmental variables;
may not generalize to

other crops.

Jhajharia et al. | Random Forest,
(2023) SVM, Gradient
Descent, LSTM,

Lasso Regression

Compare performance
of various ML models
in  predicting  crop

yield.

Only the Random Forest
model is highlighted;
other models’

performance not fully




explored.

Haque et al.

(2020)

Support Vector
Regression
(SVR), Linear

Regression (LR)

Predict crop vyield

based on factors such
as

water, uv,

pesticides, fertilizers,

and land area.

Dataset size of 140
points may limit
generalization; focused

only on SVR and LR.

Kaneko et al.

(2019)

Deep Learning on

Satellite Imagery

Predict maize yields in
six African countries
using satellite imagery

and transfer learning.

Performance varies
significantly by country;
transfer learning may

not always apply.




3.0 METHODOLOGY

A predictive system for crop yield assessment through machine learning methods
requires this section to explain its structured development framework. The framework
combines the components of data selection along with data cleaning techniques with
model building phases and XAl and generative Al functionalities. This project relies on
the Design Science Research Methodology (DSRM) to create systematic artifacts that
evaluate real-world problem solutions for effective problem-solving. The following
subsections detail essential stages of the method that maintain open evaluation

opportunities and academic research quality standards.

3.1 Dataset Collection

The research utilized crop yield data from open-source Kaggle platform provided by
Mohsin Shareef under the title "Crop Yield Prediction”. The available dataset consists of
28,243 rows to provide a sufficient capacity for training and validating machine learning
models. The dataset contains multiple characteristics that impact crop yield through
their measurement units of average rainfall (mm) and temperature (Celsius) and
pesticide usage (in tonnes) and Item and Area categories. The dataset contains
features which match confirmed agronomic yields factors as outlined by Patel (2021)

research (Patel, 2021).

Table 3.1: Dataset Feature Description

Feature Name Feature Description

Area The geographical region or country where the crop




data was recorded.

Item The specific type of crop (e.g., wheat, maize, rice)
being measured.

Year The calendar year during which the crop yield and
environmental data were recorded.

hg/ha_yield Crop yield measured in hectograms per hectare

(hg/ha), indicating productivity.

average_rain_fall_mm_per_year

The average annual rainfall in the region, measured

in millimeters.

pesticides_tonnes

Total amount of pesticides used in the region during

the year, measured in tonnes.

avg_temp

The average annual temperature in the region,

measured in degrees Celsius.

Three vital factors exist for choosing this dataset. The data addresses fundamental food

security matters which directly affect agricultural sustainability during climate change

adaptation efforts. Secondly the dataset contains multiple features which enables

researchers to create multivariable predictive models. The dataset demonstrates

excellence in multiple dimensions since it contains ample data points for proper training




with accurate annotations and minimal data gaps which renders it suitable for

dependable predictive functions.

3.2 Data Preprocessing

Any machine learning process starts with data preprocessing which determines how
well the model performs and what accuracy level it reaches and how well it adapts to
new information. The preprocessing facility included data cleaning along with variable
encoding and feature scaling techniques and train-test splitting procedures as well as

XAl model interpretability preparations.

3.2.1 Data Cleaning and Column Removal

This original dataset included multiple features namely "Area", "ltem", "Year",
"hg/ha_yield", "average_rain_fall_mm_per_year", "pesticides_tonnes" and "avg_temp".
The model-building process required elimination of the "Year" feature since it proved
non-essential for examining crop yield impact based on environmental factors and
regional elements. The researchers omitted temporal data points for this study to focus
on environmental effects versus time-based themes so they could examine regional
agricultural trends. Removing this feature minimized both multicollinearity risks and the

complexity of the model structure.

3.2.2 Encoding Categorical Variables

The categorical features “Area” and “ltem” demanded suitable numeric transformation
since machine learning models require numeric data. The One-Hot Encoding process
was applied through the OneHotEncoder class from scikit-learn. One-Hot Encoding

serves as a common methodology to turn categories into binary patterns which enable



model interpretation without assuming order relations between the input values. The
technique prevented the dummy variable trap through column dropping (parameter

‘drop="first’) in each encoding.

The converted data received DataFrame format to unite with numerical features for
developing an extensive feature matrix. The data transformation maintained important
original data patterns between Area regions and Item agriculture types for use during

model training functions.

3.2.3 Feature Scaling

Average rainfall (in millimeters) and pesticide usage (in tonnes) and average
temperature (in Celsius) made up the numeric features with varying magnitude. Larger
magnitude features have the potential to control training outcomes when normalization
techniques are absent. Application of StandardScaler from scikit-learn achieved the
normalization of these numerical features. Standardization alters data values to obtain
both a zero mean and a standard deviation value of 1 thus generating normalized
features in the space. Distance-based algorithms and ensemble models with decision

trees require this step because they depend on feature distribution for tree construction.

3.2.4 Train-Test Splitting

The model's performance evaluation depended on the data split into training and testing
sets according to an 80:20 ratio through scikit-learn's train_test_split function. An
independent evaluation of model generalization for new data points became possible

through this separation method. Random_state parameter implementation created



reproducible results since it established consistent outcomes when re-running the

analysis.

The project adopted stratified sampling for classification work but applied equivalent
representation methods for the regression analysis to keep training and test samples
equivalent to the entire data population. The distribution of underlying patterns between
regions and crop types throughout the data was properly dispersed to reduce sampling

bias.

3.2.5 Data Summary and Statistical Overview

The pandas’ describe () method computed standard preprocessing validity measures
through descriptive statistics including mean, standard deviation, minimum, and
maximum numerical values. A visual exploratory analysis was performed as part of the
evaluation. A heatmap displayed numbers to identify specific relationships between
features thus helping detect multicollinearity within the data. The distribution of target
variable (hg/ha_yield) emerged through distribution plots as well as boxplots throughout

different crops revealed distributional characteristics and data variability.

3.3 Algorithms Used

The development of the predictive model used Random Forest and XGBoost as two
advanced supervised machine learning algorithms. Due to their demonstrated
capabilities with non-linear high-dimensional information while requiring minimal
preprocessing efforts these algorithms were chosen. The algorithms went through

optimization with GridSearchCV before their evaluation through RMSE and R? metrics.



# Random Forest GridSearchCy

rf_grid = GridSearchCV(
estimator=RandomForestRegressor(random_state=42),
param_grid=rf_params,
cv=5,
scoring="neg_mean_squared_error',
n_jobs=-1

rf_grid.fit(X_train_scaled, y_train}

# XGBoost GridSearchC

xgb_pgrid = GridsearchCV({
estimator=XGBRegressor(random_state=42, verbosity=@),
param_grid=xgb_params,
cv=5,
scoring="neg_mean_squared_error',
n_jobs=-1

xgb_pgrid.fit(X_train_scaled, y_train)
Jfusr/local/lib/python3.11/dist-packages,/joblib/externals/loky/process_executor.py:752: Userbarning: A worker stopped wh
warnings.warn(

........................................

GridsearchCV

best_estimator_:
XGBRegressor

XGERe "essorg

! —— !
O, i

3.3.1 Random Forest Classifier

Random Forest builds several decision trees in training and uses their averaged
predictions as the final outcome. The method helps decrease the chances of overfitting
while enhancing generalization capabilities. The implementation relied on the
RandomForestRegressor module available in scikit-learn framework. The testing
involved a 5-fold cross-validation procedure where the four mentioned hyperparameters

adjusted across a predefined parameter grid.

SHAP alongside LIME served as components for interpretability enhancement through
integration into the system. SHAP enabled visual representation of global importance
analysis which found average rainfall together with pesticide usage as the most

significant influencing variables. Through local explanations LIME used linear models



surrounding specific prediction points to provide stakeholders better model transparency

and understanding (Ramzan et al., 2024).

3.3.2 XGBoost Classifier

XGBoost represents a fast and precise screwable regularized boosting algorithm for
which speed and accuracy are characteristics. XGBoost executes tree boosting
sequentially while adding regularizers that stop overfitting. XGBRegressor from xgboost
library operated with learning_rate and max_depth and n_estimators and subsample

parameters optimized by GridSearchCV (Rashid et al., 2021).

—

Pre-Processing Traini
raining

Dataset

Crop Dataset

Random Forest
Classifier
&
XGBoost
Classifier

Testing
Dataset

Best
Classification Performance Suitable _ Trained

Method Analysis Crop M Classifier

Figure 3.1: Overall architecture of crop yield prediction system

Feature importance rankings matched between XGBoost and SHAP when these
interpretability methods were applied to the XGBoost model to ensure consistency
across different analytical models. The LIME explanations received formatting in HTML
format to serve as visual aids in the final report which provided domain experts with

clear representations.



Throughout the project lifecycle the project adhered to Design Science Research
Methodology (DSRM) principles. The six fundamental activities within DSRM which start
with problem identification and end with objectives definition and design and
development followed by demonstration and evaluation and concluding with
communication were performed systematically. Unpredictable yields in agriculture
presented the main issue which needed resolution. The project established specific
objectives which aimed to increase predictive accuracy together with procedure
transparency. The project executed model development and demonstrations after
conducting thorough evaluations with XAl techniques. The research findings will be
analyzed based on published literature before publishing them through this detailed

report.
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Figure 3.2: Schematic of proposed research method

Investigators should use generative Al to expand the framework by extending data

augmentation to crops and regions which lack solid representation. GANs and



transformer-based models create synthetic tabular data which expands datasets while
minimizing model biases and creating better generalization abilities. Generative Al
systems will become part of the project framework as the next development stage

despite their absence from this version.

The proposed methodological framework linked strong machine learning models with
interpretability tools to scientific rigor under the DSRM framework to create an effective
crop yield prediction system. The upcoming section provides details about analytics
alongside research findings which include results gathered from the implemented

models.



4.0 ANALYSIS AND FINDINGS

A deep analysis of the dataset contains exploratory data analysis (EDA) to understand
the distribution of the variables, the relationships between them, and the overall
characteristics of the dataset. The initial examination of data revealed significant
information about how the variables rainfall, temperature and pesticide usage relate to
crop yield distribution. The data analysis included summary statistics together with
correlation heatmaps identifying rainfall and temperature as main yield predictors while
boxplots displayed yield differences per crop species. Models based on Random Forest
and XGBoost received training through assessment of the performance metrics RMSE
and R2. XGBoost provided superior predictive capabilities than Random Forest in their
evaluation. The research utilized Explainable Al tools SHAP and LIME for model
behavior interpretation to obtain global and local insights about feature importance.
Summary plots from SHAP demonstrated that average temperature together with
rainfall serve as main determinants for producing yields yet LIME delivered plain
explanations regarding single prediction results. The use of GridSearchCV for
hyperparameter tuning resulted in better model performance because the chosen
parameters came from cross-validation results. The analysis demonstrates that
machine learning approaches along with interpretability techniques succeed effectively

for agricultural yield prediction purposes.

4.1 Exploratory Data Analysis (EDA)
The dataset contains 28,242 records and 6 fields of which 4 fields represent numerical
data with ‘'hg/ha_yield" (crop vyield), ‘'average_rain_fall_mm_per_year (rainfall),

‘pesticides_tonnes' (pesticides used) and 'avg_temp' (temperature). The target variable



'hg/ha_yield' distributes its data with a mean value of 77,053 hg/ha and a standard
deviation of 84,957 while spanning between 50 to 501,412 hg/ha. The yield distribution
shows positive skewness because the 25th, 50th, and 75th percentiles stand at 19,919

and 38,295 and 104,676 hg/ha.

print{"\nDescriptive Statistics:")
print(data.describe(include="a11"})

Annual rainfall in the region stands at 1,149 mm whereas the data points spread
between 51 to 3,240 mm while the standard deviation measures 710 mm. Pesticides
outreach shows an average figure of 37,076 tonnes spanning from 0.04 to 367,778
tonnes. The average temperature in this region measures 20.54 degrees Celsius across
1.3°C to 30.65°C variations while displaying a standard deviation value of 6.31 degrees
Celsius.

# Correlation matrix (numerical features only)

plt.figure{figsize=(1@, &})
=ns . heatmap{numerical_features.corr(), annot=True, cmap='coolwarm®')

plt.title("Correlation Heatmap (Numerical Features)™)
plt.savefig{"correlation_heatmap.png") # Save for report
plt

»show()

Temperature showed a moderate positive relationship with yield according to the
generated correlation heatmap. Yield demonstrated a weak inverse relationship with
rainfall data but pesticide application created a low or medium positive correlation to

yield data.



Correlation Heatmap (Numerical Features)

average_rain_fall_mm_per_year
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Figure 4.1: Analysis of Correlation Heatmap

The target variable distribution for 'hg/ha_yield' was displayed through a histogram
together with KDE (kernel density estimate) plot visualization. The visual display of
distribution showed extensive skewness to the right side along with the majority of yield
data points located beneath the mean value of 77,000 hg/ha. The histogram shows
extensive tailing in the higher end values for hg/ha_yield which indicates there are
outliers among the regions or crops. The right-skewed data requires models that can

efficiently process such distributions.

# Distribution of target variable (¥ield)
plt.figure{figsize=(18, 6)})
zns.histplot(datal "hg/ha_vield"], kde=True)
plt.title("Crop ¥ield Distribution (hg/ha)}")
plt.savefig("yield_distribution.png™)
plt.show()



The distribution plot verifies statistical data by showing the concentration of most
samples between lower-to-mid yield values along with infrequent instances of

exceptional high output.

Crop Yield Distribution (hg/ha)
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Figure 4.2: Distribution of the target variable

The boxplot analysis conducted for crop vyields (hg/ha_yield) by ‘ltem' crop types
exposed important patterns in yield data distribution. The crop yield data for maize and
sugarcane showed solid results with their median point near the average value and
minimized range between highest and lowest values indicating reliable productive

results.



# Bowplot of yield by crop tvpe
plt.figure(figsize=(12, B6)})
sns.boxplot{x="Item", y="hg/ha_yield', data=data)
plt.xticks{rotation=45)

plt.title("Yield Distribution by Crop Tvpe")

£,

plt.savefig("yield_by_crop.png

wh
]
’

plt.show()
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Figure 4.3: Yield Distribution by Crop Type using Box Plot

The vyield outcomes for pulses and root vegetables showed extensive variability
because of their wide interquartile ranges together with several outlier values. Specific
environmental conditions make certain crops demonstrate both stability and resilience
which requires predictive models to have targeted approaches. Crop-specific
forecasting requires isolating yield data by type since current methods demonstrate

inconsistent accuracy in predicting different agricultural produce outcomes.



4.2 Predictive Modeling Results

4.2.1 Model Performance Metrics

The Random Forest (RF) and XGBoost models reached predictive results based on the

Root Mean Squared Error (RMSE) and R? (Coefficient of Determination) metrics.

# Best models
best_rf = rf_grid.best_estimator_

# Predictions
y_pred_rf = best_rf.predict(¥_test_scaled)
v_pred_xgb = best_xgb.predict(X_test_scaled)

# Evaluation
def evaluate_model{name, y_true, y_pred)

{mean_squared_error{y_true, y_pred})

» y_pred)
print(f"{name} RMSE: {rmse:.3f}")
prinmt(f"{name} R?: {r2:.3f}")

evaluate_model("Tuned Random Forest®, y_test, y_pred_rf)
evalugte_model("Tuned XGBoost", y_test, v_pred xgb)

Tuned Random Forest RMSE: 13523.369
Tuned Random Forest R®: B8.975

Tuned XGBoost RMSE: 159@6.77@

Tuned XGBoost R%: @.951

The Random Forest model displayed perfect data fit to the test data as reflected by its
13,523.369 RMSE and 0.975 R2? score. The model predicts the variances in the crop
yield to 97.5% accuracy since its prediction errors remain small. Absolute prediction
errors from XGBoost reached 18,906.770 while its R? value measured 0.951 indicating
95.1% variance explanation. The Random Forest model outperformed the competition
through its accurate results which included a lower RMSE and higher R? than the other

model suggesting it should be selected for this dataset.

The Actual vs. Predicted scatter plot confirmed model performance evaluation.



# Actual vs Predicted plot

plt.figure{figsize=(18, 6))

plt.scatter(y_test, y_pred_rf, alpha=8.5, label='Random Forest")
plt.scatter(y_test, y_pred_xgh, alpha=8.5, label='XGBoost', color='red')
plt.plot([y.min{}, y.max(}], [¥.min(), y.max{}]1, 'k--')
plt.xlabel{"Actual Yield (hg/ha)"}

plt.ylabel{"Predicted Yield {(hg/ha}")

plt.title("Actual vs Predicted Crop Yield")

plt.legend()}

plt.savefig("actual_vs_predicted.png")

plt.show()

Most predictions from the model fall alongside the 45-degree reference line which

demonstrates that observed and predicted yields match well.
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Figure 4.4: Actual vs Predicted Crop Yield

The dispersion levels of XGBoost predictions increased as the yield values grew while
maintaining some minor estimation errors at the extreme range. Random Forest
predictions followed a tighter pattern surrounding the reference line that indicates its

superior accuracy.
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Figure 4.5: Distribution of Residuals by Algorithms

A tabular summary of model performance is provided below:

Table 4.1: Classifier Performance Evaluation

Model RMSE R2

Random Forest | 13,523.369 | 0.975

XGBoost 18,906.770 | 0.951

The data verifies that Random Forest achieved better performance than XGBoost

regarding error reduction and variable interpretation.



4.2.2 Cross-Validation Results
The model reliability and overfitting prevention required five-fold cross-validation (CV)

implementation.

# 5-Fold CV Score for comparison
rf_cv = cross_val_score(best_rf, X_train_scaled, y_train, cv=5, scoring="r2"')
Xgb_cv = cross_wal_score(best_xgb, X_train_scaled, y_train, cv=5, scoring='r2")

print(f"Random Forest CV R?: {np.mean(rf_cv):.3f} * {np.std{rf_cv):.3F}")
print(f"XGBoost CV R*: {np.mean(xgb_cv):.3f} + {np.std(xgb_cv):.3f}")

Random Forest CV R*: @.974 + 8.8@3
XGBoost CV R2?: 8.948 + 9.086

Random Forest reached mean R? performance of 0.974 + 0.003 and XGBoost obtained
an R? value of 0.948 + 0.006. Each model displays consistent performance results
because their standard deviations measure +0.003 for RF and +0.006 for XGBoost

across multiple data split variations.
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Figure 4.6: 5-Fold Cross-Validation Performance



Random Forest displayed better stability by presenting both improved average R2
values and diminished variance levels than XGBoost did. Random Forest provides
better generalization capabilities for unseen data which makes it an optimal selection for
real-world applications. XGBoost shows slightly higher performance variation which

might result from sensitive parameters or data difficulties.

Key Takeaways:

1. Random Forest achieves the best prediction results because it possesses both

the minimal RMSE (13,523.369) and the highest R2 (0.975).

2. The validation through cross-validation technique reveals stable performance
because the two models demonstrate small variations in their metrics when

tested across different folds of data.

3. The prediction accuracy of XGBoost remains robust although it generates inferior
consistency results when evaluating extremely high yield levels compared to

Random Forest models.

The research findings indicate Random Forest should lead crop yield prediction in this
situation since it demonstrates high accuracy alongside reliable stability. Further
hyperparameter optimization makes XGBoost an effective alternative especially when

applied in this context.

Table 4.2: Cross-Validation Performance

Model Mean CV R2 | Standard Deviation




Random Forest | 0.974 +0.003

XGBoost 0.948 +0.006

4.3 Explainable Al (XAl) Interpretability (SHAP & LIME)

4.3.1 SHAP Interpretability

The SHAP (SHapley Additive exPlanations) summary plot features a wide view of
feature effects on model predictions throughout all data points. The summary plot
arranges variable mean absolute SHAP values from most to least important for
predicting crop yield. The plot determines "ltem_Potatoes" as the leading influential
feature and subsequently identifies "ltem_Rice, paddy" and "ltem_Maize" as the

subsequent key elements.

explainer_shap = shap.TreeExplainer(rf)
shap_values = explainer_shap.shap_values{¥_test_scaled)

ummary_plot(shap_values, X_test_scaled, feature_names=X.columns, plot_type="bar"}
ig("shap_summary.png”, bbox_inches='tight')

# Force plot for a single prediction (local explanation}
shap.force_plot{explainer_shap.expected_value, shap_values[®,:], X_test_scaled[@,:], feature_names=X.columns, matplotlib=True)
ig("shap_force_plot.png”, bbox_inches="tight")

Frankenstein_predict emphasizes the impact of crop kinds above all other variables for
forecast accuracy according to agronomic science principles since each species
demonstrates individual yield potentials shaped by genetic structure and growth timeline

and climatic factors.
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Figure 4.7: SHAP analysis for different parameters

Two key aspects "average rain_fall_ mm_per_year" alongside "pesticides tonnes

feature lower in the rating scale yet continue to affect production results of the crops.



Production levels of crops show peculiar behavior to rainfall variations since dry
conditions and extreme water levels induce the same type of crop damage. The amount
of pesticides activated through "pesticides _tonnes" shows positive correlation with
agricultural yield improvements by maintaining proper pest control standards. The
SHAP values for "Area_Egypt" and "Area_Canada" show lower influence compared to
other variables which indicates spatial characteristics influence yield less than specific
crop and environmental variables. These analytic findings could assist governmental
agencies in making better policy selections which emphasize developing better crop
types along with irrigation optimization rather than only focusing on location-based

approaches.

explainer_lime = lime.lime_tabular.limeTabularExplainer(
X_train_scaled,
feature_names=X.columns,
mode="regression’

instance = X_test_scaled[@]
lime_exp = explainer_lime.explain_instance(instance, rf.predict, num_features=5)
lime_exp.save_to_file("lime explanation.html™} # Embed in report

The SHAP force plot served to study one instance of prediction analysis at an individual
level. The plot shows the individual impact each feature played on the yield prediction
generated for a particular farm. This prediction from the model indicated that the yield
would reach 25,000 hg/ha above the average value. The main feature increase of
+5000 hg/ha came from "avg_temp" at 20 °C because this condition delivered suitable
maize cultivation conditions. The combined use of 0.5 tonnes in pest control led to an
increase of 3,000 hg/ha in yield performance. The average rainfall measure (600 mm)
caused a reduction in the predicted yield level by -1,500 hg/ha because low rainfall

amounts stress crop health.



By performing this analysis decision-makers receive applications that help farmers
alongside agronomists and representatives in making wise choices. Farmers who
access these insights should use them to modify their operational methods by installing
irrigation systems when rainfall falls below average. Sanctioned authorities together with
agronomists now have the tool to recognize field-specific yield restraining elements
while public servants adjust support programs for drought-tolerant seeds across

wetness-stressed zones.



5.0 DISCUSSION

The research accomplished the implementation of machine learning (ML) with
Explainable Al (XAl) methods to forecast crop vyields that generated essential
agricultural information for stakeholders. EDA results showed three primary findings in
the data including yield distributions that skewed to the right and major differences
between crops along with minor relationships between rainfall and temperature
parameters and agricultural outputs. Random Forest (RF) surpassed XGBoost as the
ideal predictive model through achieving 13,523.369 RMSE and 0.975 R2 while
demonstrating near-perfect accuracy. The reliability of Random Forest (RF) was
confirmed by cross-validation through its attainment of a mean R2 value at 0.974 *

0.003 which demonstrated its durability across different data divisions.

The implementation of XAl tools showed that crop type along with temperature and
pesticide usage explained the model predictions with crop type being the primary
influencing factor. The SHAP global analysis pinpointed widespread patterns throughout
the whole dataset but local force plots delivered site-specific practical insights which
showed that temperatures at 20°C increased crop yields while inadequate 600 mm
rainfall reduced productivity. The obtained information enables farmers to enhance their
irrigation practices along with allowing agronomists and policymakers to recommend

appropriate resource allocations.

5.1 Limitations and Future Recommendations

The study focused on limited variables rainfall, temperature, and pesticide usage

excluding important factors like soil quality and farming practices. The dataset’s right-



skewed distribution and presence of outliers affected model consistency, particularly for
extreme vyield values. While Explainable Al tools improved interpretability, their
complexity may limit accessibility for non-expert users. Additionally, models were

trained on historical data, limiting their adaptability to real-time climate changes.

Future research should include more diverse features such as soil health, crop
management data, and real-time environmental inputs. Advanced preprocessing
methods should address skewness and outliers. Integrating temporal data and using
generative Al could improve model robustness. Simplifying explainable outputs into
user-friendly platforms and developing lightweight models for real-time predictions

would make these solutions more practical for farmers and policymakers.

5.2 Reflection

Reviews of analyzed studies demonstrate that deep learning and machine learning
processes have revolutionized crop yield prediction through their ability to extract
sophisticated relationships between agricultural elements. Both Random Forest and
XGBoost demonstrate robust predictive power yet researchers must address essential
barriers such as missing data and regional dispersal of agricultural patterns alongside
model universal adoption issues. Future scholarship in this field shows promise through
the combination of transfer learning and explainable Al techniques. Continual innovation
serves as an essential factor for developing scalable accurate accessible solutions that

deliver benefits to farmers and protect global food security.
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Appendix

Dataset Link:

https://www.kaqggle.com/datasets/patelris/crop-yield-prediction-dataset/code
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