Al-driven predictive modeling sustainable water resource
management
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1. Introduction

The global challenges of inefficient water management and water scarcity exist
strongly during periods of quick population expansion and urban development and
weather pattern changes. The sustainable management of urban water demands
household water consumption analysis to help optimize resource usage as fresh water
supplies face worsening strain. Multiple locations face substantial barriers to real-time
water consumption data access due to basic infrastructure challenges and privacy
factors. Researchers along with policymakers face substantial difficulties in developing
predictive models and implementing intelligent resource allocation strategies because of
this problem. Standard datasets specific to domestic water usage require annotation
because they limit the effective application of contemporary machine learning

approaches in this field (Garcia-Soto et al., 2024).

This project develops a high-quality simulated annotated dataset which represents
actual water consumption patterns from different household situations and
environmental scenarios. The key water consumption factors including household
occupancy along with bathing frequency and garden size and seasonal patterns and
rainwater harvesting methods are simulated using rule-based generative data
techniques. The dataset duplicates natural water consumption patterns found in
practical studies and aids developers in creating and testing machine learning prediction
models for water prediction and user behavior modeling (Kasim Gorenekli and Gulbag,

2024).



The project shows how to build a machine learning application for environmental
management through detailed acquisition of data and its subsequent cleaning along
with annotation and validation procedures. Constructing synthetic data populated with
annotations forms the primary objective for establishing predictive models which

forecast daily residential water use.

The objectives of this project are:

1. The creation of a synthetic dataset requires generative Al-inspired logic to

duplicate realistic residential water consumption examples.

2. The dataset needs to include various water usage influencing features from

social statistics alongside human conduct and local environmental data.

3. All annotations must be conducted following set guidelines to maintain high data

guality throughout the dataset.

4. The dataset needs cleaning and dataset preprocessing to treat issues which
affect data quality like empty values or random noise alongside various data

entry inconsistencies.

5. A proof-of-concept regression model needs development to use the dataset for

predicting daily water consumption while verifying its usefulness.

6. A review of the project needs to confirm its compliance with Responsible Al
standards focusing on fairness protocols and transparency protocols and ethical

protocols for synthetic data generation.



Professional guidance for synthetic data generation proves to be a robust analytical tool
that deals with data accessibility issues and improves resource sustainability according

to scientific findings.

2. Data Acquisition

The dataset was created via rule-based modeling inspired by generative models that
implement a simulation approach obtained from Generative Al. Synthetic data was
essential for the project since public water consumption resources did not share joint
information about behavioral variables along with environmental elements while
following ethical standards. Free access to water consumption data presents three main
challenges because it contains insufficient data while withholding certain information
due to data protection requirements. The decision to produce synthetic data followed
due to complete feature control as well as distribution monitoring of the dataset integrity

and privacy risk reduction (Kofinas, Spyropoulou and Laspidou, 2018).

A set of rules along with relationships were established to generate simulated water
usage patterns observed in residential environments during the data generation
process. The simulation method derived strong inspiration from Generative Al
approaches which extract patterns from datasets to generate new instances. During
data generation the model employed predefined water consumption simulating rules
which experts developed to study residential water behavior patterns. The set rules
incorporated multiple considerations related to water usage that included factors like
household sizes and dwelling types together with location information and seasonal

variations and water-related behaviors.



The compilation of data contains 10,000 individual records that correspond to separate
households. Each entry consists of characteristics representing a household along with
its water consumption habits. The dataset includes socio-demographic features which
consist of household resident counts plus house types and has behavioral aspects
based on daily shower frequency and weekly laundry counts. Additional information
about environmental effects included the garden dimensions and rainwater collection
systems and regional location and seasonal data (Winter, Spring, Summer or Autumn)
to represent rainfall influences and geographical differences. The set of factors serves
as an essential determinant which controls the water consumption patterns based on
space and time conditions. Scientists established the target water consumption
measurement in liters per day through various factors that followed real-world water

usage patterns.



[15] print(df.head(5))

3 household_id num_residents house_type daily_showers
8 H1@808a4 4  Apartment 5.7
1 Hilgges1l 5 Terraced 4.7
2 Hlg8682 3 Detached 2.9
3 Hleeas3 5 Terracad 8.8
4 H1l88884 5 Terraced 1.4

laundry_loads_per_week garden_size m2 uses_rainwater_harvesting region \

8 8 15 Yes South

1 3 31 Yes South

2 6 15 Mo North

3 7 65 Yes South

4 1 28 Mo South
season daily water_consumption_liters

@ Spring 278.54

1 Autumn 366.408

2  Summer 34%.61

3 Winter 396.87

4  Winter 428.12

Figure 2.1: Dataset First 5 Rows

The research team selected Python as its core programming language to generate data
and utilized NumPy together with Pandas libraries to achieve random components and
variability simulations needed. A comprehensive calculation method measured both
family size facts and the typical laundry and bathing behaviors but incorporated
seasonal irrigation and rainwater collection aspects. The provided dataset included

Gaussian noise to represent normal fluctuating factors (Santos et al., 2021).

The development process presented two main challenges to find equilibrium between
natural consumption simulation and computational efficiency and distribute values in
ways that eliminate synthetic bias effects. Proper tuning procedures were necessary to
preserve internal consistency between features while also developing consumption

ranges that reflected natural real-world patterns. The dataset comprises diverse



balanced information about residential water usage that proves suitable for machine
learning analysis despite the complications during its development (Pulla, Hakan

Yasarer and Yarbrough, 2024).

3. Data Cleaning and Preparation

The generative simulation approach used to generate synthetic data underwent
extensive cleaning and preparation techniques which made it ready for machine
learning applications. The artificially produced dataset included intentional errors and
missing information because its format resembled the natural data flaws which often

appear in professional scientific work (Jesuino Vieira Filho et al., 2024).

The first step in the cleaning process involved identifying and handling missing

values. The dataset contains simulated real-world data defects because we purposely
left blank entries that amount to 5% in selected non-critical columns
(laundry_loads_per_week, garden_size, and daily_shower). The isnull() function within
Pandas library identified these blank entries. We substituted empty numerical data
points with mean imputation to obtain average values from each data column. The
researchers adopted this methodology because it maintained original data patterns
while minimizing the introduction of undesired biases caused by random inputs. The
mode of each categorical field served as an imputation value for any missing data

points found in house_type and region columns.



™ < % ¢

# Simulate a few missing values for demonstration (optional)
# df.loc[np.random.choice(df.index, 188), "daily_showers'] = np.nan

print("Missing values before cleaning:\n", df.isnull().sum())

# Handle numeric missing values using mean imputation
num_cols = ['num_residents’, 'daily showers®, 'laundry loads per week', 'garden size m2']
for col in num_cols:
if df[col].isnull().sum{) > @:
df[col].fillna{df[col].mean(), inplace=True)

# Handle categorical missing values using mode
cat_cols = ['house type’, 'region’', 'season’, 'uses rainwater_harvesting']
for col in cat_cols:
if df[col].isnull().sum({) > @:
df[col].fillna(df[col].mode()[@], inplace=True)

print("Missing values after cleaning:\n", df.isnull().sum(})

Figure 3.1: Handling Missing Values

The second step addressed the presence of noisy data or outliers. The built-in
limitations in synthetic generation prevented unrealistic values while small Gaussian
noise injected into the target variable and a few behavior-related features resulted in
minor accurate deviations. The multivariate relationships among features in the records
resulted in unreachable values for daily_water_consumption and
daily_shower_frequency recorded by specific entries. The identified values served as
outliers when analyzed through interquartile range (IQR)-based outlier detection. A data
review process checked all values which exceeded 1.5 times the IQR higher than the
third quartile point and those lower than the first quartile point. The extremely abnormal
entries exceeding 1000 liters daily for household use were verified for logical
consistency and professionals either normalized them with realistic thresholds or

excluded these cases when the evaluations confirmed their unreasonable nature.



# Step 2: Handle Outliers (IQR method)
8! Sc—oo—oo——o-——oco—oo———o——oo—oo—oo——o==o
def limit_outliers_igr(df, column):
Q1 = df[column].quantile(®.25)
Q3 = df[column].quantile(®.75)
IQR = Q3 - M
lower = Q1 - 1.5 * IQR
upper = Q3 + 1.5 * IQR
df [column] = np.where(df[column] > upper, upper, df[column])
df[column] = np.where(df[column] < lower, lower, df[column]}

# Apply outlier treatment to relevant columns
igr_cols = ['daily_water_consumption_liters', "daily showers', ‘garden_size m2']
for col in igr_cols:

limit_outliers_igr(df, col)

Figure 3.2: Handling Noisy Values

The third step involved data type standardization and consistency checks. The
numerical fields received correct float and integer data formats and the categorical
variables became strings or categorical types. The dataset underwent a check for
duplicated entries caused by possible re executions of generation logic when similar
conditions arose. The duplicated () method helped find duplicate records which were

then removed through the process to maintain record uniqueness.

df[ "num_residents'] = df[ 'num_residents'].astype(int)

df[ 'laundry loads per week'] = df['laundry_loads per week'].astype(int)
df[ "daily showers'] = df['daily_showers'].astype(float)

df[ "garden_size m2'] = df['garden_size m2'].astype(float)

Figure 3.3: Data Type Standardization

In the fourth step, categorical variable encoding was implemented to prepare the

data for machine learning models. The categorical variables region, season and



house_type were encoded with one-hot encoding to produce binary features that can be
analyzed numerically while avoiding assumptions about their numerical order. The
conversion process raised dimensionality levels while supporting both model

compatibility and interpretability needs.

# Binary encode 'uses_rainwater_harvesting’
df[ 'uses_rainwater_harvesting'] = df['uses_rainwater_harvesting'].map({'Yes': 1, 'No': 8})

# One-hot encode remaining categorical variables
df = pd.get_dummies(df, columns=['house_type', 'region’, 'season’], drop_first=True)

Figure 3.4: Encode Categorical Variables

Feature scaling and normalization were applied as the fifth step specifically for

gradient descent-based algorithms because they require sensitivity to magnitude
differences. During Min-Max normalization all three continuous features garden_size,
daily_shower_frequency and daily_water_consumption acquired values between 0 and
1. The model training stability improved after normalization and the feature impact

became more apparent at the same time.

scaler = MinMaxScaler()
scale_cols = ['daily_showers®, 'laundry_loads_per_week', 'garden_size m2', 'daily water_consumption_liters’]
df[scale_cols] = scaler.fit_transform(df[scale_cols])

Figure 3.5: Features Scaling and Normalization

The primary technical hurdle during noise and missing value implementation involved
maintaining experimental control along with realistic property preservation. Synthetic

data requires precise processes to create artificial flaws which stay faithful to natural



data structure patterns. To validate synthetic realism researchers had to develop testing
approaches which maintained essential relationships when applying imputation

methods.

This standard multi-step cleaning process established an analytically fair synthetic
dataset that maintained realistic characteristics found in residential water consumption
data. The data underwent machine-learning preparation which resulted in a cleaned and
consistent dataset of well-organized data points that addressed noise and missing

information while setting categories for modeling purposes.

4. Annotation Guidelines

The annotation process was essential for ensuring the dataset could be effectively used
in downstream machine learning applications such as classification or regression
modeling. Given the synthetic nature of the data generated using generative Al
techniques, the annotation approach adopted here was a distant annotation strategy,
which was subsequently verified and refined through manual quality control to ensure

accuracy and consistency across the dataset (Kasim Gorenekli and Gulbag, 2024).

The primary objective of the annotation process was to enrich the generated dataset
with meaningful labels and tags that could facilitate supervised learning tasks. The main
target variable, daily_water_consumption_liters, was already computed using domain-
specific logic embedded in the generative process. However, for analytical and
modeling purposes, we introduced categorical labels based on this continuous value to

indicate whether a household’s water usage was “Low,” “Moderate,” or “High.” This

required designing a consistent annotation pipeline.



The annotation process was executed in the following structured phases:

1. Automated Label Generation (Distant Annotation)

Initially, we implemented a rule-based system for assigning water usage categories
based on quantile  distribution. Using the interquartie range  of

daily_water_consumption_liters, the following heuristic was applied:

e« Low Usage: Below 25th percentile

« Moderate Usage: Between 25th and 75th percentile

e High Usage: Above 75th percentile

This distant supervision strategy helped in automatically labeling the 10,000 entries

without requiring manual review of every row.

2. Manual Verification and Spot-Checking

Although distant labeling is efficient, it is prone to inconsistency, especially when the
underlying data is synthetic and generated probabilistically. Therefore, a manual
validation phase was conducted, where a sample of 500 randomly selected entries (5%
of the dataset) were cross-checked by domain-aware reviewers. Reviewers inspected

whether the assigned label was reasonable in light of:

« Number of residents

e House type

e Shower frequency



e Garden size and irrigation

e Season and regional water usage variations

This manual check confirmed that the quantile-based cutoffs were consistent with
expected household behavior, and only 2.6% of the records required Ilabel
adjustments—mostly due to garden-related anomalies or edge-case combinations of

features.

3. Annotator Guidelines for Manual Checks

A set of annotation rules were established and shared among all reviewers involved in

manual quality control. These were:

For 1-2 residents, consumption should rarely be labeled “High” unless the

garden is large and its summer.

« Rainwater harvesting households in summer with large gardens should still

stay within the “Moderate” range unless daily showers exceed 5.

o For apartments, "High" usage is less likely unless household size exceeds 5 and

laundry/shower frequency is high.

e Households with low garden size (<20 m?2) should not fall under “High”

regardless of season.

« Detached homes get a consumption multiplier and may justifiably reach “High”

more often.



These rules helped standardize manual interpretation and correct label deviations when

encountered.

4. Ensuring Label Consistency Across the Dataset

To maintain label consistency, automated scripts were used to check for:

« Class imbalance (e.g., avoiding over-representation of any category)

e Duplicate records or contradictory labels

e Logical violations (e.g., “Low” label assigned to large households with many

showers and no rainwater harvesting)

Labels were audited using cross-tabulations with feature columns and visualizations like
boxplots to detect inconsistencies. Any identified anomalies were resolved by adjusting

the labeling threshold or re-reviewing the annotation rules.

5. Annotation Challenges

Several challenges emerged during the annotation process:

o Class distribution skew: Synthetic generation initially skewed more data toward

moderate usage. Thresholds had to be adjusted to balance class counts.

e Edge-case validation: Some combinations (e.g., large gardens with few

residents but no rainwater harvesting) generated ambiguous labels.

« Seasonal bias: Since seasons affect garden irrigation multiplier, consistent

labeling required normalization within seasonal subgroups.



o Feature interaction complexity: High water usage could result from multiple

small contributions that made interpretation more difficult.

To address these, the annotation logic was refined iteratively and visual inspection tools
were used to confirm correlation patterns across labeled classes. The annotation phase
combined automated labeling (distant annotation) with manual spot-checking and
guideline-based correction, achieving a high degree of consistency and semantic
alignment between labels and features. The annotation guidelines were formalized and
followed by all contributors, reducing subjectivity and ensuring that the labels reflect

real-world intuition about water consumption behavior.

5. Feature Description

The synthetic water consumption dataset contains multiple engineered features that
collectively represent the household-level behavior and environmental context

influencing daily water usage.

Table 5.1: Features Descriptions of Dataset

Feature Name Type Description
household _id Categorical Uniqgue identifier for each household
(ID) record, no influence on water
consumption.
num_residents Numerical Number of people living in the
(int) household; directly affects base water
usage.
house_type Categorical Type of dwelling (Apartment,
Detached, Semi-detached, Terraced);




affects overall usage multiplier.

daily_showers Numerical Average number of daily showers per
(float) household; contributes to direct water
usage.
laundry_loads_per_week Numerical Number of laundry loads per week;
(int) influences weekly water consumption,
normalized to daily usage.
garden_size_m2 Numerical Size of the garden in square meters;
(int) contributes to irrigation demand,
especially in warmer seasons.
uses_rainwater_harvesting Categorical Indicates whether rainwater
(Yes/No) harvesting is used; reduces garden
water demand when 'Yes'.
region Categorical Geographical region (North, South,
East, West); adds spatial context to
water usage.
season Categorical Current season (Winter, Spring,
Summer, Autumn); affects garden
usage pattern.
daily_water_consumption_liters | Numerical Target variable; computed total daily
(float) water consumption per household in

liters.

Each feature in the dataset was purposefully designed using domain knowledge to

ensure meaningful relationships with the target variable,

daily_water_consumption_liters. Core predictors like num_residents, daily _showers,

and laundry loads per_week directly impact water usage based on realistic

consumption rates. Structural features such as house type and garden_size m2

introduce variation based on home size and outdoor space, while



uses_rainwater_harvesting adjusts for sustainable practices by reducing garden-related
consumption. Additional environmental context features such as region alongside
seasonal features provide spatial and temporal analysis capabilities. The system
calculates target variable values through a rule-based combination of all inputs that
generate simulated residential daily water consumption. A classification-oriented version

of the variable derives its values into 'Low' and 'Moderate' and 'High' categories.

Due to its artificial data structure this model cannot display intricate interrelationships
and irregular patterns which naturally occur in operating distribution systems. The built-
in fixed values of shower and irrigation water that appear in the formula do not
demonstrate validity when used under alternative cultural settings and technological
systems. Economic status variables together with utility bills and operational data were

omitted due to their effects on actual usage patterns.

The synthetic data method provides privacy protection against real household
information but all policy advice resulting from this dataset must be viewed with caution.
The synthetic dataset should not be utilized for practical applications because it consists

of artificial household records.

The data framework consists of understandable elements that adhere to recognized
water usage pattern determinants. An effective solution emerges through integrating
behavioral realism with computational control structures for synthetic datasets but only

applicable to modeling and sustainability evaluations along with predictive needs.



6. Proof-of-Concept Machine Learning Model

The Proof-of-Concept Machine Learning Model required implementing a regression
solution on the annotated synthetic household water consumption data. The goal
involved identifying daily_water_consumption_liters from features which represented
demographic data and structural characteristics and behavioral patterns and

environmental conditions of homes.

The study performed a comparison of Linear Regression and Random Forest
Regressor and Decision Tree Regressor followed by K-Nearest Neighbors (KNN)
Regressor. Each model received testing data amounting to 20 percent of the complete
data after allocating 80 percent for training purposes. Model evaluation incorporated
regression metrics that included MAE and RMSE and R2 Score. The regression metrics
allow monitoring of model accuracy rates together with prediction accuracy scales and

target variable depiction ability.

Table 6.1: Regression Performance of 4 Different Classifier

Model MAE | RMSE | R2 Score

Linear Regression 56.05 | 78.27 | 0.7136

Random Forest Regressor 17.40 | 22.90 | 0.9755




Decision Tree Regressor 24.96 | 34.60 | 0.9440

K-Nearest Neighbors Regressor | 33.24 | 45.16 | 0.9047

The Random Forest Regressor proved its superiority by reaching the minimum MAE
and RMSE and reaching the top R? score of 0.9755 which signifies its capability to
discover complex non-linear relationships effectively within the dataset. Both Decision
Tree Regressor and KNN Regressor produced results with high accuracy yet lower than

Random Forest Regressor yet superior to baseline performance.

The linear regression model showed inferior performance because its R? value reached
only 0.7136 thus indicating complex relationships between features and target variables

unraveled by linear assumptions.

The experimental outcome proves how the artificial data works well for actual business
modeling situations. The annotated features provide sufficient information for machine
learning predictions to be effective and the measurement statistics confirm structural
and data quality of the dataset. The implemented model acts as a proof of concept thus
enabling researchers to employ more advanced algorithms for predictive tasks such as

water demand forecasting, resource planning or policy simulation.

7. Responsible Al Considerations

Responsible Al is a foundational pillar of this project, guiding the development and
deployment of the synthetic household water consumption dataset and associated

machine learning models. The project consciously integrates core principles of



Responsible Al, including fairness, bias mitigation, transparency, and data privacy,

to ensure ethical, inclusive, and reliable Al outcomes.

To begin with, bias mitigation was considered from the earliest stages of data
generation. The rule-based generative Al method provided a way to precisely manage
the representation of different household types together with regions and seasonal
components. The project assured consistent data distribution for Apartment, Detached
as well as other housing types and North, South, East, West geographical areas and
socio-behavioral patterns. A synthetic dataset creation method let the project bypass
natural biases which normally appear when utilizing observational data from unbalanced
historical populations. Through this control method sampling bias was diminished while

the dataset acquired better representational fairness.

Fairness in predictive modeling was also addressed by evaluating the model's
performance across diverse feature groupings. The models trained on synthetic data
underwent performance checks to stop any specific feature pairings (such as high
occupancy of a particular area or garden sizes in summer) from producing major
prediction errors. The awareness provides opportunities for creating fair systems which
will use predictive information to support billing enforcement or recommend water usage

guidelines.

In terms of privacy, one of the strongest points of this project is the complete avoidance
of personal or sensitive data. This method generates synthetic data instead of using real
user information because the implementation approach remains both privacy-protecting

for users while ensuring no direct breach of confidentiality or GDPR regulations occur.



The dataset contains no information that allows users to be identified or makes their

sensitive data vulnerable to misuse or re-identification.

The project demonstrates both explainability along with transparency features. All
variables in the dataset originated from concrete physical measurements such as
residential population statistics and detailed water usage activities (including laundry
washing and bathing practices) and environmental factors. This simple model
architecture makes it easier for people such as administrators and policymakers to
understand both prediction outcomes and the basis for their conclusions. Future
developers will have access to XAl tools due to the transparent design approaches

implemented.

This establishes principles for ethical innovation as its concluding component. By using
synthetic data scientists can develop unbiased precise models that conform to ethical Al
principles which creates a foundation to develop technology that both supports
sustainability and inclusiveness. Information security improves through fairness auditing
and bias testing of demographic parameters as well as differential privacy

implementation to boost Responsible Al compliance.

8. Conclusion

Rule-based generative Al techniques allowed analysts to develop synthetic datasets
which enabled modeling and prediction of household water usage trends. The dataset
designers implemented a researched set of features that followed domain-based
connections to represent natural world activities along with privacy protections despite

data collection restrictions. The data preparation process included three stages starting



with cleaning before annotation and then explanation leading to multiple training steps

of machine learning models.

The proof-of-concept models, particularly the Random Forest Regressor, showcased

strong predictive power with high accuracy (R? = 0.9755), low error metrics, and

interpretable feature relationships. These results confirmed the dataset’s utility for

training regression models and possibly extending to classification tasks. Furthermore,

the project embedded key Responsible Al principles such as fairness, bias mitigation,

transparency, and privacy, establishing an ethical framework for future development.

Future Recommendations

1.

Incorporate Real-World Validation: Although the synthetic dataset mimics
realistic scenarios, future work should validate model performance using real-
world water consumption data (where privacy and availability permit) to

benchmark and refine the synthetic approach.

Temporal and Behavioral Evolution: Introduce time-series data to model
consumption trends over weeks or months and simulate behavioral changes due
to policy interventions, water pricing changes, or seasonal awareness

campaigns.

Deploy in Educational or Public Utility Settings: The synthetic dataset and
models can serve as effective tools in academic courses, research, and public

utility training environments, where real data may be inaccessible or sensitive.



References

Garcia-Soto, C.G., Torres, J.F., Zamora-lzquierdo, M.A., Palma, J. and Troncoso, A.
(2024). Water consumption time series forecasting in urban centers using deep
neural networks. Applied Water Science, 14(2).

doi:https://doi.org/10.1007/s13201-023-02072-4.

Jesuino Vieira Filho, Arlan Scortegagna, de, P. and Pablo Andretta Jaskowiak (2024).
Machine learning for water demand forecasting: case study in a Brazilian coastal

city. Water Practice & Technology. doi:https://doi.org/10.2166/wpt.2024.096.

Kasim Gorenekli and Gulbag, A. (2024). Comparative Analysis of Machine Learning
Techniques for Water Consumption Prediction: A Case Study from Kocaeli
Province. Sensors, [online] 24(17), pp.5846-5846.

doi:https://doi.org/10.3390/s24175846.

Kofinas, D.T., Spyropoulou, A. and Laspidou, C.S. (2018). A methodology for synthetic

household water consumption data generation. Environmental Modelling &

Software, 100, pp.48—66. doi:https://doi.org/10.1016/j.envsoft.2017.11.021.

Pulla, S.T., Hakan Yasarer and Yarbrough, L.D. (2024). Synthetic Time Series Data in
Groundwater Analytics: Challenges, Insights, and Applications. Water, 16(7),

pp.949-949. doi:https://doi.org/10.3390/w16070949.

Santos, M.C., Borges, A.l., Carneiro, D.R. and Ferreira, F.J. (2021). Synthetic dataset to
study breaks in the consumer's water consumption patterns.

doi:https://doi.org/10.1145/3475827.3475836.



https://doi.org/10.1007/s13201-023-02072-4
https://doi.org/10.2166/wpt.2024.096
https://doi.org/10.3390/s24175846
https://doi.org/10.1016/j.envsoft.2017.11.021
https://doi.org/10.3390/w16070949
https://doi.org/10.1145/3475827.3475836

