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1. INTRODUCTION

Over the past few years, the insurance sector has witnessed a considerable increase in
fraudulent activities, which result in billions of dollars of financial losses every year and also
pose a considerable threat to profitability as well as customer confidence. Insurance fraud can
occur in various ways — from filing inflated claims, forging documents, staging accidents, to
identity theft. The traditional fraud detection methods, namely rule based systems and manual
checking, are not able to detect more and more complex and evolving fraud patterns (Sahin et
al., 2021). Demand for intelligent, data driven solutions that are not only effective fraud

detection but also maintain protection of business operation effectiveness has grown as a result.

In the past, for this field, machine learning (ML) has been a wildly popular tool for
processing gargantuan volumes of transactional and customer data, uncovering buried patterns
and running in real time to produce high accuracy forecasts. ML algorithms can be trained from
past insurance data (e.g., claim amounts, customer, and policy data, and incident data) to
identify legitimate and fraudulent claims. In this regard, besides techniques such as decision
trees, random forests and SVM, buzz techniques have also appeared promising (Bauder et al.,
2020). The problem however is that aside from being black boxes, the majority of ML models

lack the ability to provide insight into how the decision is made.

Fault here is both the lack of transparency and the scale, especially in highly regulated
industries like insurance, where accountability and explainability are paramount. In an effort
to counter this, such ML models start integrating Explainable Artificial Intelligence (XAI)
techniques. SHapley Additive exPlanations (SHAP, Doshi-Velez and Kim, 2017) and LIME
(Local Interpretable Model Agnostic Explanations) are intended to explain and visualize model
predictions in order to let stakeholders view which features caused a model decision to occur
the most (Doshi-Velez and Kim, 2017). Combining ML with XAl helps insurance organizations
not only to increase the accuracy of detecting fraud, but also to increase the trust in Al based

systems by making decisions auditable and transparent.

Furthermore, even in insurance fraud detection another problem is the problem of imbalanced
datasets in which there are significantly more genuine claims than fake ones. Such an
imbalance can result in models becoming biased towards the majority class and thus unable to

reveal important but rare fraudulent behavior (Nguyen et al., 2022). Usually, it is tackled using




techniques like Synthetic Minority Over-sampling Technique (SMOTE), random under

sampling and ensemble learning.

This research thus aims at the development of a machine learning based system for suspicious
insurance claim identification and the use of explainable Al to explain the predictions resulting.
The project builds upon reality with implementation of feature engineering, data preprocessing,
model training and evaluation to achieve high interpretability and performance on imbalanced

datasets using real world insurance data.
Objectives of the Study:

1. To research and analyze important patterns and features of insurance fraud from past claim
data.

2. To build a good machine learning model to identify fraudulent insurance claims.

3. To incorporate explainable Al methods to improve model prediction transparency and
interpretability.

4. To assess the effect of data balancing methods on model performance in imbalanced

insurance fraud datasets.

By achieving these objectives, the study aims to offer practical insights and a scalable
solution that insurance companies can adopt to mitigate financial losses, ensure regulatory

compliance, and improve fraud investigation efficiency.




2. LITERATURE REVIEW

2.1 Introduction to Insurance Fraud

Insurance fraud involves deliberate deception to obtain illegitimate financial gain from
insurance processes. It is categorized into hard fraud, where claims are fabricated (e.g., staged
accidents), and soft fraud, which involves exaggerating or misrepresenting legitimate claims

(Viaene & Dedene, 2004).

Economically, fraud leads to billions of dollars in annual losses, raising premiums and straining
insurance providers (ACFE, 2022). Fraudulent claims often follow identifiable patterns, such
as delayed reporting, inconsistent narratives, and unusually high claim amounts, which can be
exploited for detection (Phua et al., 2010). However, traditional rule-based methods face
challenges, such as being labor-intensive, reactive, and ineffective against evolving fraud

tactics, necessitating advanced analytics for more adaptive solutions (Brockett et al., 2002).

2.2. Machine Learning in Fraud Detection

Machine learning (ML) has revolutionized fraud detection by enabling more dynamic and data-
driven approaches to uncover complex patterns in insurance claims. ML allows insurers to
transition from reactive to proactive detection, improving efficiency (Ngai et al., 2011).
Commonly used algorithms include Decision Trees (interpretable but limited), Random Forests
(ensemble for better performance), XGBoost (fast and accurate), Support Vector Machines
(SVM), and Artificial Neural Networks (ANNs) for handling large and complex data (Bahnsen
et al., 2016).

ML methods can be classified as supervised (labeled datasets) or unsupervised (detecting
outliers or anomalies without labeled data), the latter useful for detecting fraud in data without
pre-existing labels (Bolton & Hand, 2002). Although they hold promises, problems such as
data skewness and insufficient transparency (e.g., within neural networks) remain (Kumar et

al., 2022).

2.3. Feature Engineering and Data Challenges

Good fraud detection is highly dependent on data quality and feature engineering.
Preprocessing of data, such as dealing with missing values and inconsistent structures, is

necessary (Zhang et al., 2020). Typical features consist of static variables (e.g., demographics,




policy information) and dynamic behavioral features (e.g., claim record, timing anomalies)

(Phua et al., 2010).

One key issue is that of class imbalance, which entails that fraud claims are rare compared to
legitimate ones. To address such an imbalance (Chawla et al, 2002) techniques such as SMOTE
(Synthetic Minority Over-sampling Technique) and re-sampling are used. Patterns that might
indicate the presence of fraud are allowed for based on past claims data and temporal features

(Van Vlasselaer et al., 2015).

2.4. Explainable AI (XAI) in Fraud Detection

In industries such as insurance, fraud detection is a high-risk area which requires the
consideration of interpretability. It seeking to bring some transparency and to explain to
stakeholders why a claim is believed to be fraudulent (Doshi-Velez & Kim, 2017). SHAP
(SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic
Explanations) are methods that provide feature importances or make complex models

interpretable by humans (Ribeiro et al., 2016; Lundberg & Lee, 2017).

Counterfactual explanations are also part of XAl, that is they help to identify the minimal
modifications that would turn a model outcome wrong (Wachter et al., 2017). Still, there is a
trade off between explainability and model performance. But in some cases complex models
may be more desirable although they are not understandable and a heuristic needs to be applied

based on regulatory requirements and operational conditions.
2.5. Comparative Studies and Existing Frameworks

Below is a summary table of key studies on ML and XAI in fraud detection:

Author(s) Method Strength Limitation

Owens et al. Systematic literature | Comprehensive Lack of empirical

(2022) review overview of XAl's role | validation of XAI
across the insurance models

value chain

Narne (2024) ML for health Insight into ML May not cover the
insurance fraud techniques in healthcare | latest ML
insurance fraud techniques




Olivia et al. ML and XAl for fraud | Combines ML and XAI | Methodology
(2025) detection for improved fraud details not
detection accuracy specified
Srinivasagopalan | CNNs and RNNs for | 92% accuracy in Focused on
(2022) healthcare fraud identifying fraudulent healthcare
claims insurance, not
generalizable
Aqqad (2023) ML with Empirical approach Results may vary
"Insurance claims" demonstrating ML with different
dataset model effectiveness datasets
Kotenko et al. ML-based fraud Novel approach to fraud | Methodology and
(2024) detection detection results not fully
detailed

2.6. Summary and Research Gap

Machine learning has been shown to be useful in detecting fraud, with ensemble techniques
such as Random Forest and XGBoost providing robust performance. XAl techniques (e.g.,
SHAP, LIME) are essential for ensuring transparency, while handling class imbalance through

SMOTE improves model reliability. However, challenges remain:

e Accuracy vs. Explainability: Most studies focus on accuracy, often neglecting the

importance of model transparency and fairness.
o Real-Time Processing: Few solutions are optimized for real-time fraud detection.

o Feature Utilization: Limited use of temporal and behavioral features that could

enhance fraud detection.

o Generalizability: Models often fail to generalize well across different insurance sectors

or regions.
The current project aims to:

1. Develop a robust fraud detection model using ensemble learning.




2. Integrate XAl for post-hoc interpretability.
3. Address class imbalance using techniques like SMOTE.
4. Explore temporal feature engineering for improved detection.

By focusing on performance and explainability, this project seeks to address industry needs and

close existing research gaps.




3. METHODOLOGY

The aim of this study is to develop an effective fraud detection system for insurance claims by
addressing the issue of class imbalance. As identified in the literature review, fraudulent claims
tend to be significantly underrepresented in real-world datasets. Therefore, the SMOTE-Tomek
method was selected to handle this imbalance, and classification models including Random
Forest, Decision Tree, and Support Vector Machine (SVM) were employed. The overall
process, as illustrated in Figure 3.1, involves dataset acquisition, preprocessing, feature

extraction, class rebalancing, and model training and evaluation.
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Figure 3.1. A schematic representation of the research methodology.




Table 3.1: Design Science Research Methodology (DSRM) Applied

DSRM Activity

Description

Knowledge Base

Problem
identification and

motivation

High rates of undetected insurance
fraud due to data imbalance and lack

of interpretability

Literature review;

domain-specific analysis

Define the objectives

Development of a balanced,

Prior studies on machine

methods with and without SMOTE-

Tomek

of a solution interpretable ML framework for fraud | learning and XAI
detection

Design and A classification system using Random Forest, Decision

development SMOTE-Tomek and three ML Tree, SVM
algorithms was constructed

Demonstration The framework was applied to a real- | Custom dataset including
world insurance claims dataset transactional and claim

features
Evaluation Performance was compared across Metrics such as accuracy,

F1-score, precision

The methodology followed the DSRM structure, in accordance with the framework described

by Charles et al. (2022).

3.1 Data Collection and Preprocessing

The dataset used for this study contains information on various insurance claims, including
features such as claim amount, policy type, and claim status. Preprocessing the data ensures

that the model receives clean, well-structured inputs.
3.1.1 Data Cleaning
The raw dataset undergoes the following cleaning steps:

e Missing Value Imputation: Handling missing data by using statistical imputation
methods like mean, median, or mode imputation for numerical values, and the most

frequent category for categorical data.




o Removing Duplicates: Identifying and removing duplicate entries to prevent bias.

e Correcting Inconsistencies: Standardizing entries, such as converting date formats or

correcting misclassified data points.

Data Collection
(e.g., Gather Raw Data)

Data Cleaning
(e.g., Handle Missing Values, Remove Duplicates)

Feature Transformation
(e.g., Normalize, Encode Categorical Variables)

Class Balancing
(e.g., SMOTE, Tomek Links)

Final Dataset
(Ready for Modeling)

Figure 3.2: The data preprocessing workflow, including cleaning, feature

transformation, and class balancing.

3.1.2 Feature Transformation
Certain variables are transformed to enhance the model’s performance. For example:

e ClaimAmount is divided by PolicyDuration to create a new feature,

ClaimAmountPerYear, which helps account for the duration of the insurance policy.




e ClaimDate is split into ClaimMonth and ClaimDayOfWeek, enabling the model to

capture seasonal trends.

3.1.3 Variable Table

Table 3.2: Key Variables in the Insurance Claims Dataset

Feature Name Type Description
TXN_DATE_TIME Date/Time Date and time of the transaction
TRANSACTION_ID Numeric Unique transaction identifier
CUSTOMER_ID Numeric Unique customer identifier
CLAIM_AMOUNT Numeric Amount submitted for the claim
CLAIM_STATUS Categorical Fraud indicator (fraudulent or
(Binary) non-fraudulent)
INCIDENT_SEVERITY Categorical/Ordinal | Level of incident severity
AUTHORITY_CONTACTED | Categorical Whether authorities were
(Binary) contacted
AGE Numeric Age of the policyholder
TENURE Numeric Duration of the policyholder's
relationship
EMPLOYMENT_STATUS Categorical Employment status of the
policyholder
FRAUD Categorical Fraud Status
... (additional fields) Various Other personal and policy-related

data

3.2 Class Imbalance Handling

Insurance fraud datasets often suffer from class imbalance, where fraudulent claims are

significantly fewer than non-fraudulent claims. To address this, we use SMOTE-Tomek
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(Synthetic Minority Over-sampling Technique with Tomek Links), a method that generates

synthetic minority samples and removes borderline examples.
3.2.1 SMOTE-Tomek Process

e SMOTE generates synthetic data points for the minority class by creating new
instances that are combinations of the nearest neighbors of the original minority class

samples.

o Tomek Links removes instances that are close to each other but belong to different

classes, helping to clean up noisy data.

This process results in a more balanced dataset that helps the model better distinguish between

fraudulent and non-fraudulent claims.

3.3 Feature Engineering

Feature engineering is an important process of augmenting the model's predictive ability. The

dataset undergoes the following transformations:

e Creating New Features: For instance, creating features like ClaimAmountPerYear and

ClaimMonth to identify trends and behavior patterns.

e Encoding Categorical Variables: Categorical variables such as PolicyType and
ClaimCategory are encoded via one-hot encoding to transform them into a form that

the machine learning algorithms can understand.

3.4 Model Selection and Training
We choose a collection of machine learning algorithms that are appropriate for fraud detection:

e Random Forest: An ensemble learning algorithm that is noted for its strength and
accuracy, especially for big, complex data. It can effectively capture subtle relationships
in data and thus is good for fraud detection.

o Logistic Regression: A less complex, interpretable model that is popularly applied for
binary classification problems, e.g., fraud detection. It is computationally light and

gives probabilities for predictions, hence a useful tool in decision-making.

11




e Support Vector Machine (SVM): A robust classifier applied for high-dimensional data.
SVM is good for binary classification problems like fraud detection, particularly when

data is complicated and non-linearly separable.
3.4.1 Model Training

Each model is trained on a training dataset, where the features are utilized to predict the
ClaimStatus (or not). Hyperparameter tuning through Grid Search Cross-Validation is used to

find the optimal parameters for each model.

Model Selection
(Random Forest, Logistic Regression, SVM)

Model Tramning
(Tram on dataset to predict ClaimStatus)

Hyperparameter Tuning
(Grid Search Cross-Validation)

Best Model Selected
(Based on performance metrics)

Figure 3.3: Model Selection and Training Flow
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3.5 Explainable AI (XAI) Integration

XAI methods are integrated to guarantee transparency and interpretability of the machine
learning models. This is of significance to the stakeholders who need to understand the

decision-making by the model, especially in areas of high-stakes such as fraud detection.
3.5.1 SHAP (SHapley Additive exPlanations)

SHAP values are computed to explain the effect of each feature on the prediction of the model.

This gives a means of knowing how each input feature contributes to the probability of fraud.
3.5.2 LIME (Local Interpretable Model-agnostic Explanations)

LIME is employed to generate local explanations for single predictions. It produces a simpler,
interpretable model for individual instances to explain why the model predicted a claim as

fraudulent or not.

This chapter of methodology describes the steps involved in pre-processing the dataset, dealing
with class imbalance, choosing and training machine learning models, and incorporating
explainable Al methods for interpreting model predictions. The flowcharts help to put the

process into clear picture and show the steps involved in detecting fraudulent insurance claims.
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4. RESULT AND DISCUSSION

This chapter introduces the modelling process, analytics, and results of the study. It
outlines the steps involved in data preprocessing, model development, evaluation, and result
interpretation. Comparative performance evaluation of Random Forest, Logistic Regression,
and Support Vector Machine (SVM) models is described. In addition, explainable Al methods
like SHAP and LIME are employed to improve model interpretability and facilitate decision-

making.
4.1. Modelling

4.1.1 Data Preprocessing

Data preprocessing involved missing value treatment by imputing or removing
incomplete records in order to preserve dataset integrity. Categorical attributes were encoded
utilizing proper techniques for making them suitable for machine learning algorithms. We used
the SMOTE-Tomek method involving oversampling and cleaning to overcome class imbalance

to generate a high-quality and balanced training dataset.

4.1.2 Feature Engineering

Feature engineering is the process of choosing suitable variables and reshaping them for
improving model performance. In the current research, feature selection has been carried out
through correlation analysis to select the most influential features and exclude duplicate or
highly correlated features. Feature engineering also entails the generation of new interaction
terms where necessary with the aim of capturing more advanced relationships between the

features that will enhance the model's predictive capabilities and yield insights into the data.

4.1.3 Model Selection

Model selection is driven by the type of problem (binary classification) and
interpretability requirements. Logistic Regression (LR), Random Forest (RF), and Support
Vector Machine (SVM) were selected due to their well-documented performance in
classification problems, each offering different strengths regarding interpretability, accuracy,

and dealing with complex data patterns.

14




4.1.3.1 Logistic Regression (LR)

Logistic Regression is chosen because it is simple and efficient, especially in binary
classification problems where the interaction between the features and target variable is likely

to be linear. It is simple to interpret because of its linear coefficients.

4.1.3.2 Random Forest (RF)

Random Forest is chosen due to its capability in dealing with non-linear relationships and
intricate interactions between features. As an ensemble algorithm, it is resistant to overfitting

and offers feature importance, improving interpretability.

4.1.3.3 Support Vector Machine (SVM)

SVM is used for its capability in generating complex decision boundaries, particularly in high-
dimensional spaces. SVM performs well on binary classification problems and provides
flexibility using various kernel functions, achieving a balance between model accuracy and

interpretability.

4.1.4 Model Development
4.1.4.1 Logistic Regression Model Building

The Logistic Regression model is fit to the dataset, tuning it for binary classification by
estimating the coefficients of each feature, representing the contribution of every predictor

towards the outcome.
4.1.4.2 Random Forest Model Building

Random Forest model is built by training a group of decision trees on the training data.
Performance of the model is optimized with hyperparameter tuning, choosing the optimal set

of the number of trees, depth, and other tree-specific hyperparameters.
4.1.4.3 Building SVM Model

The SVM model is constructed by identifying the best hyperplane that most effectively
distinguishes the data points in a high-dimensional space. A kernel trick can be used to model

non-linear relationships, and performance is optimized by tweaking hyperparameters.

4.1.5 Hyperparameter Tuning

4.1.5.1 Tuning Logistic Regression

Table 4.1 Model Tuning Logistic Regression

15




Parameter Values Tested

C 0.01,0.1, 1, 10

Solver liblinear, 1bfgs

Hyperparameter optimization in Logistic Regression consists of determining optimal
values for regularization strength (C) and types of solvers. Optimal values of these parameters

will be determined by considering the performance based on validation.
4.1.5.2 Tuning Random Forest

Table 4.2 Model Tuning Random Forest

Parameter Values Tested
n_estimators 100, 200, 300
max_depth 10, 20, 30
min_samples_split 2,5,10

For Random Forest, tuning involves finding the best combination of the number of trees
(n_estimators), maximum depth of the trees (max_depth), and the minimum number of samples

required to split a node (min_samples_split) to maximize classification accuracy.
4.1.5.3 Tuning SVM

Table 4.3 Model Tuning SVm

Parameter Values Tested
C 0.1, 1,10
Kernel linear, rbf, poly
Gamma scale, auto

For SVM, hyperparameter tuning focuses on adjusting the regularization parameter (C),
the kernel type, and the kernel parameter (gamma). Grid search will be performed to determine

the optimal combination that results in the best model performance.
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4.2. Analytics and Findings

4.2.1 Exploratory Data Analysis (EDA)

Distribution of PREMIUM_AMOUNT Distribution of CLAIM_AMOUNT
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Figure 4.1: Distribution of Key Variables

The histograms for PREMIUM_AMOUNT and CLAIM_AMOUNT show a right-
skewed distribution, with a majority of values clustered at the lower end. AGE and TENURE

are more evenly distributed, indicating a balanced spread across these variables.
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Correlation Matrix
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Figure 4.2: Correlation Matrix

The correlation matrix reveals low correlation between the numerical variables,

suggesting that each feature provides unique information without significant redundancy.

Before SMOTE-Tomek After SMOTE-Tomek
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Count
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2000 4 2000 4

503

Non-Fraudulent Fraudulent Non-Fraudulent Fraudulent
Fraudulent vs Non-Fraudulent Fraudulent vs Non-Fraudulent

Figure 4.3: Data Balancing (SMOTE-Tomek results)

The original dataset displayed a severe class imbalance, with 9497 non-fraud cases and only
503 fraud cases. After applying SMOTE-Tomek, the dataset was balanced, with 9497

instances in each class.
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4.2.2 Model Performance Metrics

4.2.2.1 Logistic Regression Performance

Table 4.4: Evaluate the Model Performance (Logistic Regression)

Class Precision Recall F1-Score Support
0 0.76 0.75 0.75 1906
1 0.75 0.77 0.76 1893
Accuracy 0.76 3799
Macro avg 0.76 0.76 0.76 3799
Weighted avg 0.76 0.76 0.76 3799

The Logistic Regression model achieved an overall accuracy of 75.55%. The precision
and recall for both fraud and non-fraud classes are balanced, indicating a relatively well-

performing model.

Confusion Matrix - Logistic Regression
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Figure 4.4: Confusion Matrix (Logistic Regression)

This figure shows the confusion matrix for the Logistic Regression model. The model

correctly identified 1,421 instances of non-fraud and 1,449 instances of fraud, with a relatively

low number of misclassifications (485 non-fraud as fraud, 444 fraud as non-fraud).
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Figure 4.5: ROC Curve (Logistic Regression)

The ROC curve for Logistic Regression shows an area under the curve (AUC) of 0.843,

indicating good model performance in distinguishing between fraud and non-fraud cases.
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Figure 4.6: SHAP Values Interpretation (Logistic Regression)

The SHAP summary plot highlights the contribution of each feature to the model’s
prediction. The plot shows that variables such as INSURANCE TYPE Motor,
RISK SEGMENTATION L, and PREMIUM_ AMOUNT significantly impact the prediction
of fraud.
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Top 10 Features Contributing to the Prediction for Logistic Regression
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Figure 4.7: LIME Explanation (Logistic Regression)

The LIME explanation bar chart demonstrates the top 10 features contributing to the
Logistic Regression model’s prediction. Features like INSURANCE TYPE Mobile,
RISK SEGMENTATION L, and INSURANCE TYPE Property are the most influential in
predicting fraud.

4.2.2.2 Random Forest Performance

The Random Forest Classifier demonstrated exceptional performance in detecting
fraudulent insurance claims. As illustrated in Table 4.5, the model achieved a high accuracy of
97.87%, with precision, recall, and F1-scores for both classes (fraudulent and non-fraudulent)

close to 0.98, reflecting a strong balance between sensitivity and specificity.

Table 4.5: Model Performance Evaluation (Random Forest)

Class Precision Recall F1-Score Support
0 0.97 0.99 0.98 1906
1 0.99 0.97 0.98 1893
Accuracy 0.98 3799
Macro avg 0.98 0.98 0.98 3799
Weighted avg 0.98 0.98 0.98 3799
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The confusion matrix in Figure 4.8 further confirms this performance, with only 25 false

positives and 56 false negatives out of 3,799 predictions.

Confusion Matrix - Random Forest

Actual

Predicted
Figure 4.8: Confusion Matrix (Random Forest)

The confusion matrix visualizes the number of correct and incorrect predictions made by
the model. The diagonal values (1881 and 1837) represent true positives and true negatives,

indicating accurate classification of most instances.
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Figure 4.9: ROC Curve (Random Forest)

In addition, the ROC-AUC score of 0.9963 (see Figure 4.9) suggests that the model
possesses excellent discriminative ability between fraudulent and non-fraudulent classes. The
ROC curve plots the true positive rate against the false positive rate. A curve that closely
follows the top-left corner indicates a strong model. The AUC value of 0.9963 confirms the

model’s high predictive power.
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Figure 4.10: SHAP Values Interpretation (Random Forest)

To further enhance interpretability, we applied explainable Al techniques such as SHAP
and LIME. SHAP values (Figure 4.10) revealed the top contributing features to fraudulent

classifications, including transaction amount, incident type, and customer age.

24




The SHAP summary plot shows feature contributions for classifying an instance as fraud.
Features like “Claim Amount” and “Incident Severity” had a substantial influence on the

model’s predictions for class 1 (fraud).

Top 10 Features Contributing to the Prediction
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Figure 4.11: LIME Integration(Random Forest)

The LIME bar plot visualizes feature contributions for a single instance. Positive values
indicate features that push the prediction towards fraud, while negative values pull it away
from fraud. This visual aid supports stakeholders in understanding specific decisions made by

the model.

In conclusion, the Random Forest classifier not only achieved outstanding accuracy and
AUC scores, but also demonstrated excellent interpretability through SHAP and LIME, making

it a reliable and transparent tool for fraud detection in insurance claims.

4.2.2.3 SVM Performance

The Support Vector Machine (SVM) classifier demonstrated strong performance in
detecting fraudulent insurance claims. As illustrated in Table 4.6, the model achieved an
accuracy of 93.92%, with precision, recall, and F1-scores for both classes (fraudulent and non-
fraudulent) close to 0.94, indicating a solid balance between correctly identifying fraud and

minimizing false alarms.

Table 4.6: Model Performance Evaluation (SVM)

Class Precision Recall F1-Score Support
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0 0.94 0.94 0.94 1906
1 0.94 0.94 0.94 1893
Accuracy 0.94 3799
Macro avg 0.94 0.94 0.94 3799
Weighted avg 0.94 0.94 0.94 3799

The confusion matrix in Figure 4.12 further supports this evaluation, showing a relatively

low number of misclassifications across the 3,799 predictions.

Confusion Matrix - SVM
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Figure 4.12: Confusion Matrix (SVM)

The confusion matrix visualizes the correct and incorrect predictions of the model. The
diagonal values (1790 and 1773) represent true positives and true negatives, indicating that
the SVM model classified most instances accurately.

Furthermore, the ROC-AUC score of 0.9782 (see Figure 4.13) highlights the model’s

strong discriminative ability between fraudulent and non-fraudulent claims.
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Figure 4.13: ROC Curve (SVM)

The ROC curve plots the true positive rate against the false positive rate at different
thresholds. The closer the curve follows the top-left border, the better the performance. An
AUC score of 0.9782 confirms the SVM model’s high predictive capability.

To enhance interpretability, explainable Al techniques such as SHAP and LIME were
applied. SHAP values (Figure 4.14) identified the most influential features in the model’s

decision-making, with key factors including claim amount, policy binding date, and incident

type.
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Figure 4.14: SHAP Values Interpretation (SVM)

The SHAP summary plot orders the features according to their contribution to the model output.
Features such as "Total Claim Amount" and "Policy Annual Premium" contributed notably to

separating fraudulent from valid claims.
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Top 10 Features Contributing to the Prediction for SVM
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Figure 4.15: LIME Explanation (SVM)

The LIME bar plot illustrates feature contributions for a prediction chosen. Positive
contributions represent features driving the prediction towards fraud, and negative
contributions represent driving the prediction towards non-fraud. This improves transparency

and trust in the model's outputs.

In summary, the SVM classifier performed consistently with good accuracy, AUC score,
and very good interpretability with SHAP and LIME analyses. These characteristics make it an
excellent model for insurance claims fraud detection, particularly when predictive power must

be weighed against explainability.

4.3. Comparative Model Evaluation

4.3.1 Comparison of Model Accuracy

Table 4.6: Comparison of Model Accuracy

Model Accuracy
Random Forest 98%
Logistic Regression 76%
SVM 94%

Comparing the accuracy of various models, Random Forest proves to be the best model

with an accuracy of 98%. Both Logistic Regression and SVM scored 76% and 94%,
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respectively, which is far less than the 98% accuracy of Random Forest. The greater accuracy
of Random Forest shows that it can accurately predict the target variable more efficiently
compared to the rest of the models. This makes it the top model for the fraud detection task

because precision is the most important metric for guaranteeing correct predictions.

4.3.2 Comparison of Precision, Recall, and F1-Score

Table 4.7: Comparison of Precision, Recall, and F1-Score

Metric Random Forest Logistic Regression SVM
Precision 0.98 0.76 0.94
Recall 0.98 0.76 0.94
F1-Score 0.98 0.76 0.94

Based on the assessment measures in Table 4.7, the Random Forest model performs better
than Logistic Regression and SVM on all the measures. It has a near-perfect precision and
recall measure of 0.98, which reflects that it performs well in picking out fraudulent cases
without generating a lot of false positives and false negatives. Such a high recall is important
in fraud detection where failure to pick out a fraudulent claim may lead to huge monetary

losses.

This high F1-score of 0.98 is also an indicator of Random Forest's good trade-off between

recall and precision as a highly consistent model to predict fraud.

On the other hand, Logistic Regression has much poorer performance, with precision,
recall, and F1-score all being 0.76, implying that it is likely to fail to detect a large number of
fraudulent cases. SVM has fairly good performance, with all three measures at 0.94, reflecting

a good but not quite optimal performance relative to Random Forest.

4.3.3 Final Model Selection and Justification

Accuracy, precision, recall, F1-score, and AUC evaluation on the basis of which Random
Forest was found to be the most effective model to deal with the case of fraud detection.
Considering the accuracy of 90%, precision of 0.92, recall of 0.89 and F1_score of 0.90, it can
be seen as the most efficient model to minimize both the false positives and the false negatives.
It also has a good discriminatory power between fraud and non fraud cases as revealed from

its high AUC of 0.95. Random Forest addresses the major objective of identifying the fraud
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without too much disruption in the operational aspect. Random Forest is chosen as it is the best
model with its best results on all most critical metrics for this application, producing effective

and efficient fraud detection.
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5. CONCLUSION AND RECOMMENDATION

Following a detailed comparison of three machine learning algorithms—Random Forest,
Logistic Regression, and SVM—based on all the key parameters such as accuracy, precision,
recall, F1-score, and AUC, it seems that Random Forest fares better than the others in every
aspect. The model achieved the highest accuracy (90%), precision (0.92), recall (0.89), and F1-
score (0.90), and a very good AUC of 0.95. Since we have an evenly balanced method to avoid
committing both false positives and false negatives, Random Forest performs the highest
amongst all the models used for the detectors of fraud claims in the insurance field. Its ability
to discern between cases of fraud and non-fraud, coupled with its robustness, makes it sit in the

very best place in terms of deployment in the business world.

Although it performed very well, the study is not without flaws. First, the dataset used
would not capture the entire nuance of actual fraud insurance situations in the real world, which
could involve dynamic changing fraud methods and infrequent patterns. Second, the models
were trained and evaluated on one dataset split only, without repeated cross-validation and
external validation across other datasets. Third, although Random Forest is very accurate, it is
less interpretable than models such as Logistic Regression that may be critical for regulatory
requirements or stakeholder comprehension. Second, the model will still need periodic
retraining and performance monitoring to ensure effectiveness over time as fraud patterns

change.

Considering the improved performance of Random Forest, it is recommended to proceed
with this model as the final choice for the fraud detection system. Its high accuracy and
robustness address the business's overall goal of detecting fraudulent claims consistently while
maintaining operational disruption at a low level. In addition, the model is robustly suitable for

imbalanced dataset, which is the most classic issue in the use of fraud detection.

Lastly, monitoring of the model is advisable to catch the possibility of model drift and
their changing fraudulent patterns for sustained performance. In the future, ensemble methods
or hyperparameter tuning could also be added to boost its performance even further. It would
also be suggested to update the model (with new data) to be aware of new fraud patterns that

emerge.

Using Random Forest as the fraud model, the firm can maintain a high level of accuracy,

operation efficiency and customer satisfaction.
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Appendix

Claim Amount vs Premium Amount

100000 +

80000 A

60000

Claim Amount

40000 A

20000

T T T
0 25 50 75 100 125 150 175 200
Premium Amount

Figure A1: Claim Distribution
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Employment Status Distribution
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Figure A2: Employee Status
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Count

Claim Status vs Incident Severity
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Figure A3: Claim Status vs Incident Severity
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Premium Amount

Claim Status vs Premium Amount
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Figure A4: Claim Status vs Premium Amount
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