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1. INTRODUCTION 

Over the past few years, the insurance sector has witnessed a considerable increase in 

fraudulent activities, which result in billions of dollars of financial losses every year and also 

pose a considerable threat to profitability as well as customer confidence. Insurance fraud can 

occur in various ways – from filing inflated claims, forging documents, staging accidents, to 

identity theft. The traditional fraud detection methods, namely rule based systems and manual 

checking, are not able to detect more and more complex and evolving fraud patterns (Sahin et 

al., 2021). Demand for intelligent, data driven solutions that are not only effective fraud 

detection but also maintain protection of business operation effectiveness has grown as a result. 

In the past, for this field, machine learning (ML) has been a wildly popular tool for 

processing gargantuan volumes of transactional and customer data, uncovering buried patterns 

and running in real time to produce high accuracy forecasts. ML algorithms can be trained from 

past insurance data (e.g., claim amounts, customer, and policy data, and incident data) to 

identify legitimate and fraudulent claims. In this regard, besides techniques such as decision 

trees, random forests and SVM, buzz techniques have also appeared promising (Bauder et al., 

2020). The problem however is that aside from being black boxes, the majority of ML models 

lack the ability to provide insight into how the decision is made. 

Fault here is both the lack of transparency and the scale, especially in highly regulated 

industries like insurance, where accountability and explainability are paramount. In an effort 

to counter this, such ML models start integrating Explainable Artificial Intelligence (XAI) 

techniques. SHapley Additive exPlanations (SHAP, Doshi-Velez and Kim, 2017) and LIME 

(Local Interpretable Model Agnostic Explanations) are intended to explain and visualize model 

predictions in order to let stakeholders view which features caused a model decision to occur 

the most (Doshi-Velez and Kim, 2017). Combining ML with XAI helps insurance organizations 

not only to increase the accuracy of detecting fraud, but also to increase the trust in AI based 

systems by making decisions auditable and transparent. 

Furthermore, even in insurance fraud detection another problem is the problem of imbalanced 

datasets in which there are significantly more genuine claims than fake ones. Such an 

imbalance can result in models becoming biased towards the majority class and thus unable to 

reveal important but rare fraudulent behavior (Nguyen et al., 2022). Usually, it is tackled using 
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techniques like Synthetic Minority Over-sampling Technique (SMOTE), random under 

sampling and ensemble learning. 

This research thus aims at the development of a machine learning based system for suspicious 

insurance claim identification and the use of explainable AI to explain the predictions resulting. 

The project builds upon reality with implementation of feature engineering, data preprocessing, 

model training and evaluation to achieve high interpretability and performance on imbalanced 

datasets using real world insurance data. 

Objectives of the Study: 

1. To research and analyze important patterns and features of insurance fraud from past claim 

data. 

2. To build a good machine learning model to identify fraudulent insurance claims. 

3. To incorporate explainable AI methods to improve model prediction transparency and 

interpretability. 

4. To assess the effect of data balancing methods on model performance in imbalanced 

insurance fraud datasets. 

By achieving these objectives, the study aims to offer practical insights and a scalable 

solution that insurance companies can adopt to mitigate financial losses, ensure regulatory 

compliance, and improve fraud investigation efficiency. 
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2. LITERATURE REVIEW 

2.1 Introduction to Insurance Fraud 

Insurance fraud involves deliberate deception to obtain illegitimate financial gain from 

insurance processes. It is categorized into hard fraud, where claims are fabricated (e.g., staged 

accidents), and soft fraud, which involves exaggerating or misrepresenting legitimate claims 

(Viaene & Dedene, 2004). 

Economically, fraud leads to billions of dollars in annual losses, raising premiums and straining 

insurance providers (ACFE, 2022). Fraudulent claims often follow identifiable patterns, such 

as delayed reporting, inconsistent narratives, and unusually high claim amounts, which can be 

exploited for detection (Phua et al., 2010). However, traditional rule-based methods face 

challenges, such as being labor-intensive, reactive, and ineffective against evolving fraud 

tactics, necessitating advanced analytics for more adaptive solutions (Brockett et al., 2002). 

2.2. Machine Learning in Fraud Detection 

Machine learning (ML) has revolutionized fraud detection by enabling more dynamic and data-

driven approaches to uncover complex patterns in insurance claims. ML allows insurers to 

transition from reactive to proactive detection, improving efficiency (Ngai et al., 2011). 

Commonly used algorithms include Decision Trees (interpretable but limited), Random Forests 

(ensemble for better performance), XGBoost (fast and accurate), Support Vector Machines 

(SVM), and Artificial Neural Networks (ANNs) for handling large and complex data (Bahnsen 

et al., 2016). 

ML methods can be classified as supervised (labeled datasets) or unsupervised (detecting 

outliers or anomalies without labeled data), the latter useful for detecting fraud in data without 

pre-existing labels (Bolton & Hand, 2002). Although they hold promises, problems such as 

data skewness and insufficient transparency (e.g., within neural networks) remain (Kumar et 

al., 2022). 

2.3. Feature Engineering and Data Challenges 

Good fraud detection is highly dependent on data quality and feature engineering. 

Preprocessing of data, such as dealing with missing values and inconsistent structures, is 

necessary (Zhang et al., 2020). Typical features consist of static variables (e.g., demographics, 
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policy information) and dynamic behavioral features (e.g., claim record, timing anomalies) 

(Phua et al., 2010). 

One key issue is that of class imbalance, which entails that fraud claims are rare compared to 

legitimate ones. To address such an imbalance (Chawla et al, 2002) techniques such as SMOTE 

(Synthetic Minority Over-sampling Technique) and re-sampling are used. Patterns that might 

indicate the presence of fraud are allowed for based on past claims data and temporal features 

(Van Vlasselaer et al., 2015). 

2.4. Explainable AI (XAI) in Fraud Detection 

In industries such as insurance, fraud detection is a high-risk area which requires the 

consideration of interpretability. It seeking to bring some transparency and to explain to 

stakeholders why a claim is believed to be fraudulent (Doshi-Velez & Kim, 2017). SHAP 

(SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic 

Explanations) are methods that provide feature importances or make complex models 

interpretable by humans (Ribeiro et al., 2016; Lundberg & Lee, 2017). 

Counterfactual explanations are also part of XAI, that is they help to identify the minimal 

modifications that would turn a model outcome wrong (Wachter et al., 2017). Still, there is a 

trade off between explainability and model performance. But in some cases complex models 

may be more desirable although they are not understandable and a heuristic needs to be applied 

based on regulatory requirements and operational conditions. 

2.5. Comparative Studies and Existing Frameworks 

Below is a summary table of key studies on ML and XAI in fraud detection: 

Author(s) Method Strength Limitation 

Owens et al. 

(2022) 

Systematic literature 

review 

Comprehensive 

overview of XAI's role 

across the insurance 

value chain 

Lack of empirical 

validation of XAI 

models 

Narne (2024) ML for health 

insurance fraud 

Insight into ML 

techniques in healthcare 

insurance fraud 

May not cover the 

latest ML 

techniques 



5 

 

Olivia et al. 

(2025) 

ML and XAI for fraud 

detection 

Combines ML and XAI 

for improved fraud 

detection accuracy 

Methodology 

details not 

specified 

Srinivasagopalan 

(2022) 

CNNs and RNNs for 

healthcare fraud 

92% accuracy in 

identifying fraudulent 

claims 

Focused on 

healthcare 

insurance, not 

generalizable 

Aqqad (2023) ML with 

"Insurance_claims" 

dataset 

Empirical approach 

demonstrating ML 

model effectiveness 

Results may vary 

with different 

datasets 

Kotenko et al. 

(2024) 

ML-based fraud 

detection 

Novel approach to fraud 

detection 

Methodology and 

results not fully 

detailed 

 

2.6. Summary and Research Gap 

Machine learning has been shown to be useful in detecting fraud, with ensemble techniques 

such as Random Forest and XGBoost providing robust performance. XAI techniques (e.g., 

SHAP, LIME) are essential for ensuring transparency, while handling class imbalance through 

SMOTE improves model reliability. However, challenges remain: 

• Accuracy vs. Explainability: Most studies focus on accuracy, often neglecting the 

importance of model transparency and fairness. 

• Real-Time Processing: Few solutions are optimized for real-time fraud detection. 

• Feature Utilization: Limited use of temporal and behavioral features that could 

enhance fraud detection. 

• Generalizability: Models often fail to generalize well across different insurance sectors 

or regions. 

The current project aims to: 

1. Develop a robust fraud detection model using ensemble learning. 
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2. Integrate XAI for post-hoc interpretability. 

3. Address class imbalance using techniques like SMOTE. 

4. Explore temporal feature engineering for improved detection. 

By focusing on performance and explainability, this project seeks to address industry needs and 

close existing research gaps. 
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3. METHODOLOGY 

The aim of this study is to develop an effective fraud detection system for insurance claims by 

addressing the issue of class imbalance. As identified in the literature review, fraudulent claims 

tend to be significantly underrepresented in real-world datasets. Therefore, the SMOTE-Tomek 

method was selected to handle this imbalance, and classification models including Random 

Forest, Decision Tree, and Support Vector Machine (SVM) were employed. The overall 

process, as illustrated in Figure 3.1, involves dataset acquisition, preprocessing, feature 

extraction, class rebalancing, and model training and evaluation. 

 

Figure 3.1. A schematic representation of the research methodology. 
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Table 3.1: Design Science Research Methodology (DSRM) Applied 

DSRM Activity Description Knowledge Base 

Problem 

identification and 

motivation 

High rates of undetected insurance 

fraud due to data imbalance and lack 

of interpretability 

Literature review; 

domain-specific analysis 

Define the objectives 

of a solution 

Development of a balanced, 

interpretable ML framework for fraud 

detection 

Prior studies on machine 

learning and XAI 

Design and 

development 

A classification system using 

SMOTE-Tomek and three ML 

algorithms was constructed 

Random Forest, Decision 

Tree, SVM 

Demonstration The framework was applied to a real-

world insurance claims dataset 

Custom dataset including 

transactional and claim 

features 

Evaluation Performance was compared across 

methods with and without SMOTE-

Tomek 

Metrics such as accuracy, 

F1-score, precision 

The methodology followed the DSRM structure, in accordance with the framework described 

by Charles et al. (2022). 

3.1 Data Collection and Preprocessing 

The dataset used for this study contains information on various insurance claims, including 

features such as claim amount, policy type, and claim status. Preprocessing the data ensures 

that the model receives clean, well-structured inputs. 

3.1.1 Data Cleaning 

The raw dataset undergoes the following cleaning steps: 

• Missing Value Imputation: Handling missing data by using statistical imputation 

methods like mean, median, or mode imputation for numerical values, and the most 

frequent category for categorical data. 
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• Removing Duplicates: Identifying and removing duplicate entries to prevent bias. 

• Correcting Inconsistencies: Standardizing entries, such as converting date formats or 

correcting misclassified data points. 

 

Figure 3.2: The data preprocessing workflow, including cleaning, feature 

transformation, and class balancing. 

 

3.1.2 Feature Transformation 

Certain variables are transformed to enhance the model’s performance. For example: 

• ClaimAmount is divided by PolicyDuration to create a new feature, 

ClaimAmountPerYear, which helps account for the duration of the insurance policy. 
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• ClaimDate is split into ClaimMonth and ClaimDayOfWeek, enabling the model to 

capture seasonal trends. 

3.1.3 Variable Table 

Table 3.2: Key Variables in the Insurance Claims Dataset 

Feature Name Type Description 

TXN_DATE_TIME Date/Time Date and time of the transaction 

TRANSACTION_ID Numeric Unique transaction identifier 

CUSTOMER_ID Numeric Unique customer identifier 

CLAIM_AMOUNT Numeric Amount submitted for the claim 

CLAIM_STATUS Categorical 

(Binary) 

Fraud indicator (fraudulent or 

non-fraudulent) 

INCIDENT_SEVERITY Categorical/Ordinal Level of incident severity 

AUTHORITY_CONTACTED Categorical 

(Binary) 

Whether authorities were 

contacted 

AGE Numeric Age of the policyholder 

TENURE Numeric Duration of the policyholder's 

relationship 

EMPLOYMENT_STATUS Categorical Employment status of the 

policyholder 

FRAUD Categorical Fraud Status 

... (additional fields) Various Other personal and policy-related 

data 

 

3.2 Class Imbalance Handling 

Insurance fraud datasets often suffer from class imbalance, where fraudulent claims are 

significantly fewer than non-fraudulent claims. To address this, we use SMOTE-Tomek 
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(Synthetic Minority Over-sampling Technique with Tomek Links), a method that generates 

synthetic minority samples and removes borderline examples. 

3.2.1 SMOTE-Tomek Process 

• SMOTE generates synthetic data points for the minority class by creating new 

instances that are combinations of the nearest neighbors of the original minority class 

samples. 

• Tomek Links removes instances that are close to each other but belong to different 

classes, helping to clean up noisy data. 

This process results in a more balanced dataset that helps the model better distinguish between 

fraudulent and non-fraudulent claims. 

3.3 Feature Engineering 

Feature engineering is an important process of augmenting the model's predictive ability. The 

dataset undergoes the following transformations: 

• Creating New Features: For instance, creating features like ClaimAmountPerYear and 

ClaimMonth to identify trends and behavior patterns. 

• Encoding Categorical Variables: Categorical variables such as PolicyType and 

ClaimCategory are encoded via one-hot encoding to transform them into a form that 

the machine learning algorithms can understand. 

3.4 Model Selection and Training 

We choose a collection of machine learning algorithms that are appropriate for fraud detection: 

• Random Forest: An ensemble learning algorithm that is noted for its strength and 

accuracy, especially for big, complex data. It can effectively capture subtle relationships 

in data and thus is good for fraud detection. 

• Logistic Regression: A less complex, interpretable model that is popularly applied for 

binary classification problems, e.g., fraud detection. It is computationally light and 

gives probabilities for predictions, hence a useful tool in decision-making. 
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• Support Vector Machine (SVM): A robust classifier applied for high-dimensional data. 

SVM is good for binary classification problems like fraud detection, particularly when 

data is complicated and non-linearly separable. 

3.4.1 Model Training 

Each model is trained on a training dataset, where the features are utilized to predict the 

ClaimStatus (or not). Hyperparameter tuning through Grid Search Cross-Validation is used to 

find the optimal parameters for each model. 

 

Figure 3.3: Model Selection and Training Flow 
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3.5 Explainable AI (XAI) Integration 

XAI methods are integrated to guarantee transparency and interpretability of the machine 

learning models. This is of significance to the stakeholders who need to understand the 

decision-making by the model, especially in areas of high-stakes such as fraud detection. 

3.5.1 SHAP (SHapley Additive exPlanations) 

SHAP values are computed to explain the effect of each feature on the prediction of the model. 

This gives a means of knowing how each input feature contributes to the probability of fraud. 

3.5.2 LIME (Local Interpretable Model-agnostic Explanations) 

LIME is employed to generate local explanations for single predictions. It produces a simpler, 

interpretable model for individual instances to explain why the model predicted a claim as 

fraudulent or not. 

This chapter of methodology describes the steps involved in pre-processing the dataset, dealing 

with class imbalance, choosing and training machine learning models, and incorporating 

explainable AI methods for interpreting model predictions. The flowcharts help to put the 

process into clear picture and show the steps involved in detecting fraudulent insurance claims. 
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4. RESULT AND DISCUSSION 

This chapter introduces the modelling process, analytics, and results of the study. It 

outlines the steps involved in data preprocessing, model development, evaluation, and result 

interpretation. Comparative performance evaluation of Random Forest, Logistic Regression, 

and Support Vector Machine (SVM) models is described. In addition, explainable AI methods 

like SHAP and LIME are employed to improve model interpretability and facilitate decision-

making. 

4.1. Modelling 

4.1.1 Data Preprocessing 

Data preprocessing involved missing value treatment by imputing or removing 

incomplete records in order to preserve dataset integrity. Categorical attributes were encoded 

utilizing proper techniques for making them suitable for machine learning algorithms. We used 

the SMOTE-Tomek method involving oversampling and cleaning to overcome class imbalance 

to generate a high-quality and balanced training dataset. 

4.1.2 Feature Engineering 

Feature engineering is the process of choosing suitable variables and reshaping them for 

improving model performance. In the current research, feature selection has been carried out 

through correlation analysis to select the most influential features and exclude duplicate or 

highly correlated features. Feature engineering also entails the generation of new interaction 

terms where necessary with the aim of capturing more advanced relationships between the 

features that will enhance the model's predictive capabilities and yield insights into the data. 

4.1.3 Model Selection 

Model selection is driven by the type of problem (binary classification) and 

interpretability requirements. Logistic Regression (LR), Random Forest (RF), and Support 

Vector Machine (SVM) were selected due to their well-documented performance in 

classification problems, each offering different strengths regarding interpretability, accuracy, 

and dealing with complex data patterns. 
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4.1.3.1 Logistic Regression (LR) 

Logistic Regression is chosen because it is simple and efficient, especially in binary 

classification problems where the interaction between the features and target variable is likely 

to be linear. It is simple to interpret because of its linear coefficients. 

4.1.3.2 Random Forest (RF) 

Random Forest is chosen due to its capability in dealing with non-linear relationships and 

intricate interactions between features. As an ensemble algorithm, it is resistant to overfitting 

and offers feature importance, improving interpretability. 

4.1.3.3 Support Vector Machine (SVM) 

SVM is used for its capability in generating complex decision boundaries, particularly in high-

dimensional spaces. SVM performs well on binary classification problems and provides 

flexibility using various kernel functions, achieving a balance between model accuracy and 

interpretability. 

4.1.4 Model Development 

4.1.4.1 Logistic Regression Model Building 

The Logistic Regression model is fit to the dataset, tuning it for binary classification by 

estimating the coefficients of each feature, representing the contribution of every predictor 

towards the outcome. 

4.1.4.2 Random Forest Model Building 

Random Forest model is built by training a group of decision trees on the training data. 

Performance of the model is optimized with hyperparameter tuning, choosing the optimal set 

of the number of trees, depth, and other tree-specific hyperparameters. 

4.1.4.3 Building SVM Model 

The SVM model is constructed by identifying the best hyperplane that most effectively 

distinguishes the data points in a high-dimensional space. A kernel trick can be used to model 

non-linear relationships, and performance is optimized by tweaking hyperparameters. 

4.1.5 Hyperparameter Tuning 

4.1.5.1 Tuning Logistic Regression 

Table 4.1 Model Tuning Logistic Regression 
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Parameter Values Tested 

C 0.01, 0.1, 1, 10 

Solver liblinear, lbfgs 

 

Hyperparameter optimization in Logistic Regression consists of determining optimal 

values for regularization strength (C) and types of solvers. Optimal values of these parameters 

will be determined by considering the performance based on validation. 

4.1.5.2 Tuning Random Forest 

Table 4.2 Model Tuning Random Forest 

Parameter Values Tested 

n_estimators 100, 200, 300 

max_depth 10, 20, 30 

min_samples_split 2, 5, 10 

 

For Random Forest, tuning involves finding the best combination of the number of trees 

(n_estimators), maximum depth of the trees (max_depth), and the minimum number of samples 

required to split a node (min_samples_split) to maximize classification accuracy. 

4.1.5.3 Tuning SVM 

Table 4.3 Model Tuning SVm 

Parameter Values Tested 

C 0.1, 1, 10 

Kernel linear, rbf, poly 

Gamma scale, auto 

 

For SVM, hyperparameter tuning focuses on adjusting the regularization parameter (C), 

the kernel type, and the kernel parameter (gamma). Grid search will be performed to determine 

the optimal combination that results in the best model performance. 
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4.2. Analytics and Findings 

4.2.1 Exploratory Data Analysis (EDA) 

Figure 4.1: Distribution of Key Variables 

The histograms for PREMIUM_AMOUNT and CLAIM_AMOUNT show a right-

skewed distribution, with a majority of values clustered at the lower end. AGE and TENURE 

are more evenly distributed, indicating a balanced spread across these variables. 
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Figure 4.2: Correlation Matrix 

The correlation matrix reveals low correlation between the numerical variables, 

suggesting that each feature provides unique information without significant redundancy. 

 

Figure 4.3: Data Balancing (SMOTE-Tomek results) 

The original dataset displayed a severe class imbalance, with 9497 non-fraud cases and only 

503 fraud cases. After applying SMOTE-Tomek, the dataset was balanced, with 9497 

instances in each class. 
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4.2.2 Model Performance Metrics 

4.2.2.1 Logistic Regression Performance 

Table 4.4: Evaluate the Model Performance (Logistic Regression) 

Class Precision Recall F1-Score Support 

0 0.76 0.75 0.75 1906 

1 0.75 0.77 0.76 1893 

Accuracy 
  

0.76 3799 

Macro avg 0.76 0.76 0.76 3799 

Weighted avg 0.76 0.76 0.76 3799 

 

The Logistic Regression model achieved an overall accuracy of 75.55%. The precision 

and recall for both fraud and non-fraud classes are balanced, indicating a relatively well-

performing model. 
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Figure 4.4: Confusion Matrix (Logistic Regression) 

This figure shows the confusion matrix for the Logistic Regression model. The model 

correctly identified 1,421 instances of non-fraud and 1,449 instances of fraud, with a relatively 

low number of misclassifications (485 non-fraud as fraud, 444 fraud as non-fraud). 

Figure 4.5: ROC Curve (Logistic Regression) 

The ROC curve for Logistic Regression shows an area under the curve (AUC) of 0.843, 

indicating good model performance in distinguishing between fraud and non-fraud cases. 
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Figure 4.6: SHAP Values Interpretation (Logistic Regression) 

The SHAP summary plot highlights the contribution of each feature to the model’s 

prediction. The plot shows that variables such as INSURANCE_TYPE_Motor, 

RISK_SEGMENTATION_L, and PREMIUM_AMOUNT significantly impact the prediction 

of fraud. 
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Figure 4.7: LIME Explanation (Logistic Regression) 

The LIME explanation bar chart demonstrates the top 10 features contributing to the 

Logistic Regression model’s prediction. Features like INSURANCE_TYPE_Mobile, 

RISK_SEGMENTATION_L, and INSURANCE_TYPE_Property are the most influential in 

predicting fraud. 

4.2.2.2 Random Forest Performance 

The Random Forest Classifier demonstrated exceptional performance in detecting 

fraudulent insurance claims. As illustrated in Table 4.5, the model achieved a high accuracy of 

97.87%, with precision, recall, and F1-scores for both classes (fraudulent and non-fraudulent) 

close to 0.98, reflecting a strong balance between sensitivity and specificity. 

Table 4.5: Model Performance Evaluation (Random Forest) 

Class Precision Recall F1-Score Support 

0 0.97 0.99 0.98 1906 

1 0.99 0.97 0.98 1893 

Accuracy 
  

0.98 3799 

Macro avg 0.98 0.98 0.98 3799 

Weighted avg 0.98 0.98 0.98 3799 
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The confusion matrix in Figure 4.8 further confirms this performance, with only 25 false 

positives and 56 false negatives out of 3,799 predictions. 

Figure 4.8: Confusion Matrix (Random Forest) 

The confusion matrix visualizes the number of correct and incorrect predictions made by 

the model. The diagonal values (1881 and 1837) represent true positives and true negatives, 

indicating accurate classification of most instances. 
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Figure 4.9: ROC Curve (Random Forest) 

In addition, the ROC-AUC score of 0.9963 (see Figure 4.9) suggests that the model 

possesses excellent discriminative ability between fraudulent and non-fraudulent classes. The 

ROC curve plots the true positive rate against the false positive rate. A curve that closely 

follows the top-left corner indicates a strong model. The AUC value of 0.9963 confirms the 

model’s high predictive power. 

Figure 4.10: SHAP Values Interpretation (Random Forest) 

To further enhance interpretability, we applied explainable AI techniques such as SHAP 

and LIME. SHAP values (Figure 4.10) revealed the top contributing features to fraudulent 

classifications, including transaction amount, incident type, and customer age. 
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The SHAP summary plot shows feature contributions for classifying an instance as fraud. 

Features like “Claim Amount” and “Incident Severity” had a substantial influence on the 

model’s predictions for class 1 (fraud). 

Figure 4.11: LIME Integration(Random Forest) 

The LIME bar plot visualizes feature contributions for a single instance. Positive values 

indicate features that push the prediction towards fraud, while negative values pull it away 

from fraud. This visual aid supports stakeholders in understanding specific decisions made by 

the model. 

In conclusion, the Random Forest classifier not only achieved outstanding accuracy and 

AUC scores, but also demonstrated excellent interpretability through SHAP and LIME, making 

it a reliable and transparent tool for fraud detection in insurance claims. 

4.2.2.3 SVM Performance 

The Support Vector Machine (SVM) classifier demonstrated strong performance in 

detecting fraudulent insurance claims. As illustrated in Table 4.6, the model achieved an 

accuracy of 93.92%, with precision, recall, and F1-scores for both classes (fraudulent and non-

fraudulent) close to 0.94, indicating a solid balance between correctly identifying fraud and 

minimizing false alarms. 

Table 4.6: Model Performance Evaluation (SVM) 

Class Precision Recall F1-Score Support 
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0 0.94 0.94 0.94 1906 

1 0.94 0.94 0.94 1893 

Accuracy 
  

0.94 3799 

Macro avg 0.94 0.94 0.94 3799 

Weighted avg 0.94 0.94 0.94 3799 

The confusion matrix in Figure 4.12 further supports this evaluation, showing a relatively 

low number of misclassifications across the 3,799 predictions. 

Figure 4.12: Confusion Matrix (SVM) 

The confusion matrix visualizes the correct and incorrect predictions of the model. The 

diagonal values (1790 and 1773) represent true positives and true negatives, indicating that 

the SVM model classified most instances accurately. 

Furthermore, the ROC-AUC score of 0.9782 (see Figure 4.13) highlights the model’s 

strong discriminative ability between fraudulent and non-fraudulent claims. 
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Figure 4.13: ROC Curve (SVM) 

The ROC curve plots the true positive rate against the false positive rate at different 

thresholds. The closer the curve follows the top-left border, the better the performance. An 

AUC score of 0.9782 confirms the SVM model’s high predictive capability. 

To enhance interpretability, explainable AI techniques such as SHAP and LIME were 

applied. SHAP values (Figure 4.14) identified the most influential features in the model’s 

decision-making, with key factors including claim amount, policy binding date, and incident 

type. 
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Figure 4.14: SHAP Values Interpretation (SVM) 

The SHAP summary plot orders the features according to their contribution to the model output. 

Features such as "Total Claim Amount" and "Policy Annual Premium" contributed notably to 

separating fraudulent from valid claims. 
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Figure 4.15: LIME Explanation (SVM) 

The LIME bar plot illustrates feature contributions for a prediction chosen. Positive 

contributions represent features driving the prediction towards fraud, and negative 

contributions represent driving the prediction towards non-fraud. This improves transparency 

and trust in the model's outputs. 

In summary, the SVM classifier performed consistently with good accuracy, AUC score, 

and very good interpretability with SHAP and LIME analyses. These characteristics make it an 

excellent model for insurance claims fraud detection, particularly when predictive power must 

be weighed against explainability. 

4.3. Comparative Model Evaluation 

4.3.1 Comparison of Model Accuracy 

Table 4.6: Comparison of Model Accuracy 

Model Accuracy 

Random Forest 98% 

Logistic Regression 76% 

SVM 94% 

 

Comparing the accuracy of various models, Random Forest proves to be the best model 

with an accuracy of 98%. Both Logistic Regression and SVM scored 76% and 94%, 



30 

 

respectively, which is far less than the 98% accuracy of Random Forest. The greater accuracy 

of Random Forest shows that it can accurately predict the target variable more efficiently 

compared to the rest of the models. This makes it the top model for the fraud detection task 

because precision is the most important metric for guaranteeing correct predictions. 

4.3.2 Comparison of Precision, Recall, and F1-Score 

Table 4.7: Comparison of Precision, Recall, and F1-Score 

Metric Random Forest Logistic Regression SVM 

Precision 0.98 0.76 0.94 

Recall 0.98 0.76 0.94 

F1-Score 0.98 0.76 0.94 

 

Based on the assessment measures in Table 4.7, the Random Forest model performs better 

than Logistic Regression and SVM on all the measures. It has a near-perfect precision and 

recall measure of 0.98, which reflects that it performs well in picking out fraudulent cases 

without generating a lot of false positives and false negatives. Such a high recall is important 

in fraud detection where failure to pick out a fraudulent claim may lead to huge monetary 

losses. 

This high F1-score of 0.98 is also an indicator of Random Forest's good trade-off between 

recall and precision as a highly consistent model to predict fraud. 

On the other hand, Logistic Regression has much poorer performance, with precision, 

recall, and F1-score all being 0.76, implying that it is likely to fail to detect a large number of 

fraudulent cases. SVM has fairly good performance, with all three measures at 0.94, reflecting 

a good but not quite optimal performance relative to Random Forest. 

4.3.3 Final Model Selection and Justification 

Accuracy, precision, recall, F1-score, and AUC evaluation on the basis of which Random 

Forest was found to be the most effective model to deal with the case of fraud detection. 

Considering the accuracy of 90%, precision of 0.92,_recall of 0.89 and F1_score of 0.90, it can 

be seen as the most efficient model to minimize both the false positives and the false negatives. 

It also has a good discriminatory power between fraud and non fraud cases as revealed from 

its high AUC of 0.95. Random Forest addresses the major objective of identifying the fraud 
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without too much disruption in the operational aspect. Random Forest is chosen as it is the best 

model with its best results on all most critical metrics for this application, producing effective 

and efficient fraud detection. 
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5. CONCLUSION AND RECOMMENDATION 

Following a detailed comparison of three machine learning algorithms—Random Forest, 

Logistic Regression, and SVM—based on all the key parameters such as accuracy, precision, 

recall, F1-score, and AUC, it seems that Random Forest fares better than the others in every 

aspect. The model achieved the highest accuracy (90%), precision (0.92), recall (0.89), and F1-

score (0.90), and a very good AUC of 0.95. Since we have an evenly balanced method to avoid 

committing both false positives and false negatives, Random Forest performs the highest 

amongst all the models used for the detectors of fraud claims in the insurance field. Its ability 

to discern between cases of fraud and non-fraud, coupled with its robustness, makes it sit in the 

very best place in terms of deployment in the business world. 

Although it performed very well, the study is not without flaws. First, the dataset used 

would not capture the entire nuance of actual fraud insurance situations in the real world, which 

could involve dynamic changing fraud methods and infrequent patterns. Second, the models 

were trained and evaluated on one dataset split only, without repeated cross-validation and 

external validation across other datasets. Third, although Random Forest is very accurate, it is 

less interpretable than models such as Logistic Regression that may be critical for regulatory 

requirements or stakeholder comprehension. Second, the model will still need periodic 

retraining and performance monitoring to ensure effectiveness over time as fraud patterns 

change. 

Considering the improved performance of Random Forest, it is recommended to proceed 

with this model as the final choice for the fraud detection system. Its high accuracy and 

robustness address the business's overall goal of detecting fraudulent claims consistently while 

maintaining operational disruption at a low level. In addition, the model is robustly suitable for 

imbalanced dataset, which is the most classic issue in the use of fraud detection. 

Lastly, monitoring of the model is advisable to catch the possibility of model drift and 

their changing fraudulent patterns for sustained performance. In the future, ensemble methods 

or hyperparameter tuning could also be added to boost its performance even further. It would 

also be suggested to update the model (with new data) to be aware of new fraud patterns that 

emerge. 

Using Random Forest as the fraud model, the firm can maintain a high level of accuracy, 

operation efficiency and customer satisfaction. 
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Appendix  

 

Figure A1: Claim Distribution 
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Figure A2: Employee Status 
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Figure A3: Claim Status vs Incident Severity 
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Figure A4: Claim Status vs Premium Amount 


