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1. The title of the thesis to be selected

An Improved DDPG with DOQN Algorithm for Robot Navigation in Dynamic Environments

2. The scientific significance and application prospects of the topic selection

Introduction:

Robot navigation in a dynamic environment is a complex problem, that requires advanced
algorithms to enable the adaptive and efficient movement of a robot. Integrating an improved
Deep Deterministic Policy Gradients (DDPG) with the Deep Q Network (DQN) algorithm solves
these challenges, by offering a robust solution with extensive scientific and practical
implications.

1. Adaptive Learning in Dynamic Environments:

The scientific significance of the improved DDPG with DQN lies in its capacity to facilitate
adaptive learning in dynamic environments. Traditional navigation algorithms may struggle in
environments where conditions change rapidly, leading to suboptimal decisions. This improved
algorithm, however, leverages the strengths of both DDPG and DQN to enhance the robot’s
ability to adapt its policies in response to dynamic changes. The neural networks involved
in the algorithm learn from both continuous and discrete action spaces, providing a
comprehensive approach to adaptive learning.

2. Handling Non—Stationarity:

Dynamic environments are inherently non—stationary, meaning that the statistical properties
of the environment can change over time. This poses a significant challenge for traditional
reinforcement learning algorithms. The integration of DDPG and DQN in the improved algorithm
addresses this issue by incorporating mechanisms that allow the robot to handle non-—
stationarity more effectively. The robot can make informed decisions by continuously updating
its policy and value functions even as the environment undergoes unpredictable changes.

3. Robustness and Generalization:

One of the key practical benefits of the algorithm is its ability to enhance the robustness
of robot navigation. Robustness, in this context, refers to the system’s resilience to
uncertainties and variations in the environment. The improved DDPG with DQN achieves this by
enabling the robot to generalize its learned policies across different dynamic scenarios.
This generalization is crucial for real-world applications where a robot may encounter a
diverse range of environments, each with its own set of challenges

4. Safe and Efficient Navigation:

Safety is a paramount concern in the deployment of robotic systems, particularly in dynamic
environments where unexpected obstacles and changes can occur. The algorithm contributes to
safer navigation by optimizing the robot’s decision-making processes. Through continuous
learning and adaptation, the robot can effectively navigate around obstacles, avoid
collisions, and choose paths that prioritize safety. This aspect is particularly relevant in
industries where robots coexist with human workers or operate in spaces with rapidly changing




conditions.
5. Real-world Applications:

The application prospects of the improved algorithm are diverse and impactful. In industrial
settings, where robots are increasingly employed for tasks such as material handling and
assembly, the ability to navigate through dynamic environments is crucial. The algorithm s
adaptability makes it suitable for scenarios where the robot needs to interact with and
respond to the movements of human workers or other machinery on the factory floor.

In the realm of autonomous vehicles, the algorithm addresses the challenges posed by dynamic
traffic conditions. The ability to navigate through changing scenarios, such as congested
traffic or unexpected road closures, is vital for the safe and efficient operation of
autonomous vehicles. Additionally, the algorithm’ s adaptability contributes to enhanced
performance in search and rescue missions, where robots may need to navigate through
unpredictable and hazardous environments

6. Human—Robot Collaboration:

The interaction between robots and humans is an emerging area of focus in robotics research.
The improved DDPG with the DQN algorithm enhances the robot’ s capability to collaborate with
humans in shared spaces. By understanding and adapting to human activities and movements,
the robot can contribute to a safer and more efficient working environment. This aspect is
particularly relevant in scenarios where robots assist humans in tasks or operate in spaces
where human-robot collaboration is essential.

7. Optimization of Learning Parameters:

The success of any reinforcement learning algorithm depends on the careful tuning of
hyperparameters and learning rates. The improved algorithm incorporates advanced strategies
for optimizing these learning parameters. This optimization not only accelerates the
convergence of the learning process during training but also contributes to the stability of
the learned policies. Fine—tuning these parameters ensures that the algorithm is not only
efficient but also dependable across different environments and scenarios

Conclusion:

In conclusion, the improved DDPG with the DQN algorithm for robot navigation in dynamic
environments represents a significant advancement in the field of robotics and artificial
intelligence. Its scientific significance lies in its ability to address the challenges posed
by dynamic and changing environments, offering a more adaptive and robust solution. The
practical applications of this algorithm span across industries, from manufacturing and
autonomous vehicles to search and rescue missions, making it a versatile and impactful
contribution to the field of robotic navigation. As technology continues to evolve, the
continued refinement and application of such algorithms will play a crucial role in shaping
the future of robotics and automation.




3. Brief introduction to background scientific research projects

The improved Deep Deterministic Policy Gradients (DDPG) with Deep Q Network (DQN) algorithm
is a breakthrough in robotic navigation, specifically designed to address the challenges posed
by dynamic environments. By integrating the strengths of DDPG and DQN, the algorithm enables
adaptive learning, effective handling of non-stationarity, and improved robustness in robot
navigation.

Scientifically, the algorithm’s innovation lies in its ability to facilitate adaptive
learning. In dynamic settings, where conditions change rapidly, the algorithm empowers robots
to make real—-time adjustments to their policies, enhancing their decision—making capabilities
Additionally, it adeptly handles non—stationarity, continuously updating its functions to
navigate through evolving environments

Practically, the algorithm enhances the robustness of robot navigation, enabling the
system to generalize learned policies across different dynamic scenarios. Safety 1is
prioritized through optimized decision—making processes, crucial for applications in
industries with human-robot collaboration and autonomous vehicles navigating through changing
traffic conditions.

The real-world applications of this algorithm are diverse, spanning industries such as
manufacturing, autonomous vehicles, and search and rescue missions. Its adaptability makes it
well-suited for environments where robots need to navigate through varied and unpredictable
conditions.

In conclusion, the improved DDPG with the DQN algorithm represents a significant
advancement 1in robotic navigation, offering a versatile solution to navigate dynamic
environments with efficiency and safety. Its application across diverse industries underscores
its potential to reshape the landscape of robotic systems.




4. Main research content of the dissertation

discrete action spaces,

. Improved DDPG Algorithm and Approach:
The Improved DDPG algorithm represents a significant advancement in autonomous robot path
planning within dynamic environments. Through the integration of both continuous and

this enhanced algorithm achieves heightened adaptability,

allowing robots to navigate seamlessly through unpredictable scenarios. The algorithm’ s

decision—making processes have been refined to ensure real—-time responsiveness to

evolving obstacles and unpredictable movements.

4. 2.

Flowchart of Improved DDPG Algorithm

Execute selected action

Receive reward or penalty

Role of DQN in Collision Avoidance:

In collision avoidance, the DQN module plays a crucial role by augmenting the
decision—making processes of the algorithm in real—-time. The DQN module learns to
predict the future positions of obstacles,

robot’ s path accordingly.

Select action based on current state and policy

Update policy based on new state, reward, and previous policy

termination condition is met

Initialize algorithm parameters

Collect initial state information
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Improve policy based on experience

and this information is used to adjust the




4. 3.

Flowchart of DDPG and DQN Interaction
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Algorithmic Steps for Optimal Path Planning:
The Improved DDPG algorithm follows a series of algorithmic steps to achieve optimal
path planning in dynamic environments. These steps include:

State observation: The robot collects information about its current state and the
surrounding environment.

Action selection: The algorithm selects an action based on the current state and the
learned policy.

Action execution: The robot executes the selected action.

Reward evaluation: The robot receives a reward or penalty based on its actions and
the resulting state.

Policy update: The algorithm updates its policy based on the new state, reward, and
previous policy.




4.4.

Flowchart of Path Planning Algorithm

Initialize algorithm parameters

Observe current state

Select action based on current state and policy

Execute selected action
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termination condition is met

Training Process and Optimization Strategies:

The Improved DDPG algorithm is trained using a simulated dynamic environment. The
algorithm learns to navigate the environment by trial and error, and its policy is
updated over time. Optimization strategies, such as hyperparameter tuning and learning
rate adjustments, are used to ensure that the algorithm converges efficiently.

Flowchart of Training Process

Initialize algorithm parameters

Generate simulated dynamic environment

Train algorithm in simulated environment

Evaluate algorithm performance

Tune hyperparameters and learning rates

The Model convergence is achieved




4.1. Conclusion and Future Work:

In conclusion, the Improved DDPG with DQN algorithm demonstrates remarkable
effectiveness in dynamic path planning for autonomous robots. This research opens
avenues for future improvements, including the refinement of algorithm parameters
and exploration of diverse dynamic scenarios. The broader impact of this research on
advancing autonomous robotics in dynamic environments is evident, and future work
will focus on further enhancing the algorithm's capabilities for real-world
navigation challenges

5. Main problems expected to be solved
In the context of obstacle avoidance for autonomous robots, the Improved DDPG with
DQN algorithm aims to address the following key challenges:

1. Adaptability to Dynamic Environments:
Problem: Navigating through environments characterized by frequent and unpredictable
changes poses a significant challenge for autonomous robots
Solution: The Improved DDPG with DQN algorithm enhances adaptability by seamlessly
integrating continuous and discrete action spaces. This approach allows robots to
dynamically adjust to changing surroundings, such as moving obstacles or evolving
terrains.

2. Efficient Path Planning with Minimal Collisions:

Problem: Balancing efficient path planning with the minimization of collisions is
crucial in dynamic environments where conditions can rapidly change

Solution: The algorithm strategically optimizes decision—making processes to generate
path plans that prioritize both travel time efficiency and the reduction of collision
risks. By fine—tuning learning parameters and incorporating real—-time information,
the algorithm aims to achieve a delicate balance between speed and safety.

In summary, the Improved DDPG with DQN algorithm specifically addresses challenges

related to adaptability in dynamic environments and efficient path planning with a

focus on minimizing collisions. These problems are central to the research topic of
obstacle avoidance for autonomous robots




6. Project proposal conditions (including academic conditions, equipment conditions, budget

estimates, and implementation status)
Academic requirements:
1) The tutor can provide adequate guidance
2) The laboratory has done some research on surround vision automatic driving methods
Equipment conditions:
1) Equipped with deep learning server.

2) It has a simulation platform environment and does not require real vehicles

7. Literature review

1. ”SLP-Improved DDPG Path-Planning Algorithm for Mobile Robot in Large—Scale Dynamic
Environment” Chen & Liang (2023)

This paper introduces an enhanced deep deterministic policy gradient (DDPG) path
planning algorithm for mobile robots operating in large—scale dynamic environments.
The proposed algorithm integrates sequential linear path planning (SLP) to elevate the
robot’ s success rate and reduce its path length. Experimental results demonstrate that
the proposed algorithm outperforms traditional DDPG algorithms in terms of navigation
efficiency and obstacle avoidance capabilities

2. “Agoraphilic navigation algorithm in dynamic environment with obstacles motion
tracking and prediction” Hewawasam et al. (2021)

This paper presents an agoraphilic navigation algorithm for mobile robots operating
in dynamic environments with moving obstacles. The proposed algorithm employs a
combination of motion tracking and prediction techniques to effectively avoid obstacles
and reach the desired goal. Experimental results validate the effectiveness of the
proposed algorithm in navigating dynamic environments while maintaining obstacle
avoidance.

3. 7 RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic
Environments ” Mackay et al. (2022)

This paper introduces a reinforcement learning (RL) algorithm for autonomous robot
navigation in dynamic environments. The proposed algorithm utilizes a decentralized
value-of-state (DOVS) function to facilitate navigation in environments with both
static and moving obstacles. Experimental results demonstrate the effectiveness of the
proposed algorithm in navigating dynamic environments while avoiding collisions with
obstacles.

4. ”"Past, Present and Future of Path-Planning Algorithms for Mobile Robot Navigation in
Dynamic Environments” Hewawasam et al. (2022)

This paper provides a comprehensive overview of path—planning algorithms for mobile
robot navigation in dynamic environments. It discusses the challenges associated with
path planning in dynamic settings and reviews various algorithms developed to address
these challenges. The paper serves as a valuable resource for researchers and
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practitioners interested in mobile robot navigation in dynamic environments

“DWA-RL: Dynamically Feasible Deep Reinforcement Learning Policy for Robot Navigation
among Mobile Obstacles” Patel et al. (2021)

This paper introduces a deep reinforcement learning (RL) algorithm for robot navigation
among mobile obstacles. The proposed algorithm incorporates a dynamic window approach
(DWA) to ensure the feasibility of the robot’s actions. Experimental results
demonstrate the effectiveness of the proposed algorithm in navigating among mobile
obstacles while maintaining collision avoidance

“Crowd—Aware Mobile Robot Navigation Based on Improved Decentralized Structured RNN
via Deep Reinforcement Learning” Zhang & Feng (2023)

This paper proposes an improved decentralized structured recurrent neural network
(RNN) for crowd-aware mobile robot navigation. The proposed algorithm employs deep
reinforcement learning (RL) to train the RNN to navigate in crowded environments.
Experimental results demonstrate the effectiveness of the proposed algorithm in
navigating crowded environments while maintaining safety and efficiency.

“Autonomous Learning and Navigation of Mobile Robots Based on Deep Reinforcement
Learning” Lai et al. (2022)

This paper presents a deep reinforcement learning (RL) framework for autonomous
learning and navigation of mobile robots. The proposed framework utilizes a
hierarchical RL architecture to enable navigation in a variety of environments.
Experimental results demonstrate the effectiveness of the proposed framework in
facilitating autonomous learning and navigation for mobile robots

“"Learning Interaction-Aware Trajectory Predictions for Decentralized Multi-Robot
Motion Planning in Dynamic Environments” Zhu et al. (2021)

This paper presents a method for learning interaction—aware trajectory predictions for
decentralized multi-robot motion planning in dynamic environments. The proposed method
utilizes a deep neural network to learn to predict the future trajectories of multiple
robots. Experimental results demonstrate the effectiveness of the proposed method in
improving the performance of decentralized multi-robot motion planning.

”“A Navigation Probability Map in Pedestrian Dynamic Environment Based on Influencer
Recognition Model” Qiao et al., (2020)

This paper introduces a navigation probability map (NPM) for mobile robot navigation
in pedestrian dynamic environments. The proposed NPM incorporates an influencer
recognition model to identify and track pedestrians. Experimental results demonstrate
the effectiveness of the proposed NPM in enhancing the safety and efficiency of mobile
robot navigation in pedestrian—rich environments

”“A 3D - Printed Self - Learning Three - Linked - Sphere Robot for Autonomous Confined -
Space Navigation” Elder et al., (2021)

This paper describes the design and implementation of a 3D-printed self-learning three-—
linked—sphere robot for autonomous navigation in confined spaces. The robot employs a
reinforcement learning (RL) algorithm to learn to navigate in confined environments
Experimental results demonstrate the robot’s effectiveness in navigating confined
spaces while adapting to complex environments
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“Mobile robot navigation based on tangent circle algorithm” Rekik & Derbel, (2019)

This paper proposes a tangent circle algorithm for mobile robot navigation in dynamic
environments. The proposed algorithm utilizes tangent circles to represent obstacles
and employs a dynamic window approach (DWA) +to generate collision—free paths

Experimental results demonstrate the effectiveness of the proposed algorithm in
navigating dynamic environments while avoiding collisions

“Mobile Robot Navigation Using Deep Reinforcement Learning” Lee & Yusuf, (2022)

This paper presents a deep reinforcement learning (RL) framework for mobile robot
navigation in dynamic environments. The proposed framework utilizes a deep Q-learning
algorithm to learn to navigate in environments with both static and moving obstacles
Experimental results demonstrate the effectiveness of the proposed framework in
navigating dynamic environments while maintaining collision avoidance

“Path Planning for Mobile Robot Navigation in Unknown Indoor Environments Using Hybrid
PSOFS Algorithm” Wahab et al., (2020)

This paper introduces a hybrid particle swarm optimization (PSO) and firefly algorithm
(FSA) for path planning in unknown indoor environments. The proposed algorithm combines
the global exploration capabilities of PSO with the local exploitation capabilities
of FSA to effectively navigate unknown environments. Experimental results demonstrate
the effectiveness of the proposed algorithm in navigating unknown indoor environments
while minimizing path length and avoiding obstacles

"Development of Path Planning Algorithm of Centipede Inspired Wheeled Robot in Presence
of Static and Moving Obstacles Using ModifiedCritical-SnakeBug Algorithm” Das et al.
(2019)

This paper presents a modified critical-snakebug (MCSBA) algorithm for path planning
of a centipede—inspired wheeled robot in environments with static and moving obstacles

The proposed MCSBA algorithm incorporates a modified critical distance calculation and
an obstacle avoidance strategy to effectively navigate in complex environments.
Experimental results demonstrate the effectiveness of the proposed algorithm in
navigating environments with static and moving obstacles while maintaining path
smoothness and collision avoidance.

”Sensor Fusion for Social Navigation on a Mobile Robot Based on Fast Marching Square
and Gaussian Mixture Model” Mora et al., (2022)

This paper proposes a sensor fusion framework for social navigation on a mobile robot
using fast marching square (FMS) and Gaussian mixture model (GMM). The proposed
framework utilizes FMS to estimate the robot’s state and GMM to model the behavior of
other agents. Experimental results demonstrate the effectiveness of the proposed
framework in enabling safe and efficient navigation in social environments

“Obtaining Robust Control and Navigation Policies for Multi-robot Navigation via Deep
Reinforcement Learning” Jestel et al., (2021)

This paper presents a deep reinforcement learning (RL) approach for obtaining robust
control and navigation policies for multi-robot navigation in dynamic environments.
The proposed approach utilizes a multi—agent RL framework to enable coordination and
cooperation among multiple robots. Experimental results demonstrate the effectiveness
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of the proposed approach in achieving robust control and navigation for multi-robot
systems in dynamic environments

"Development of an Omnidirectional AGV by Applying ORB-SLAM for Navigation Under ROS
Framework” Wu et al., 2023)

This paper describes the development of an omnidirectional automated guided vehicle
(AGV) using ORB-SLAM for navigation under the Robot Operating System (ROS) framework.
The proposed AGV utilizes ORB-SLAM for simultaneous localization and mapping (SLAM)
to enable accurate and robust navigation in complex environments. Experimental results
demonstrate the effectiveness of the proposed AGV in achieving precise navigation and
obstacle avoidance

“Collision Avoidance for a Car—like Mobile Robots using Deep Reinforcement Learning”
Yeom, 2021)

This paper presents a deep reinforcement learning (RL) algorithm for collision
avoidance in car—like mobile robots. The proposed algorithm utilizes a deep
deterministic policy gradient (DDPG) algorithm to learn to navigate in environments
with both static and moving obstacles. Experimental results demonstrate the
effectiveness of the proposed algorithm in achieving collision—free navigation in
complex environments

“Navigation Simulation of a Mecanum Wheel Mobile Robot Based on an Improved A Algorithm
in Unity3D” Li et al., 2019)

This paper presents an improved A% algorithm for navigation simulation of a Mecanum
wheel mobile robot in Unity3D. The proposed algorithm incorporates obstacle avoidance
and path smoothing techniques to enhance the robot’s navigation performance.
Experimental results demonstrate the effectiveness of the proposed algorithm in
navigating complex environments while avoiding obstacles and maintaining smooth
trajectories.

”Indoor Point-to—Point Navigation with Deep Reinforcement Learning and Ultra—wideband”
Sutera, 2020)

This paper introduces a deep reinforcement learning (RL) framework for indoor point-—
to-point navigation using ultra-wideband (UWB) signals. The proposed framework
utilizes a UWB localization system to provide precise location information and a deep
deterministic policy gradient (DDPG) algorithm to learn to navigate in indoor
environments. Experimental results demonstrate the effectiveness of the proposed
framework in achieving efficient and robust indoor point—to—point navigation.

"Decentralized Structural-RNN for Robot Crowd Navigation with Deep Reinforcement
Learning” Liu et al., 2020)

This paper presents a decentralized structural recurrent neural network (RNN) for
robot crowd navigation using deep reinforcement learning (RL). The proposed RNN
architecture enables multiple robots to learn their own navigation policies while
considering the actions of other robots. Experimental results demonstrate the
effectiveness of the proposed approach in achieving coordinated and collision—free
navigation in crowded environments

”Autonomous Warehouse Robot using Deep Q-Learning” Peyas et al., 2021)
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This paper describes the development of an autonomous warehouse robot using deep Q-
learning for navigation and task execution in a warehouse environment. The proposed
robot utilizes a deep Q-learning algorithm to learn to navigate in the warehouse, pick
up items, and deliver them to designated locations. Experimental results demonstrate
the robot’s effectiveness in performing warehouse tasks efficiently and safely.

“Success Weighted by Completion Time: A Dynamics—Aware Evaluation Criteria for Embodied
Navigation” Yokoyama et al., 2021)

This paper proposes a new evaluation criterion for embodied navigation, namely ”“success
weighted by completion time” (SWCT). SWCT considers both the success rate of navigation
tasks and the time taken to complete them. Experimental results demonstrate the
effectiveness of SWCT in evaluating the performance of embodied navigation algorithms
in dynamic environments

”A novel mobile robot navigation method based on deep reinforcement learning” Quan et
al., (2020)

This paper introduces a novel deep reinforcement learning (RL) algorithm for mobile
robot navigation. The proposed algorithm utilizes a deep deterministic policy gradient
(DDPG) algorithm and incorporates a hierarchical reinforcement learning (HRL)
framework to enable effective navigation in complex environments. Experimental results
demonstrate the effectiveness of the proposed algorithm in achieving efficient and
robust navigation in dynamic environments

“Path Planning via an Improved DQN-Based Learning Policy” Wang et al., 2021

In this paper, the authors introduce an efficient Path Planning Network with Deep Q-
Network (PN-DQN) algorithm, emphasizing the importance of comprehensive and diverse
learning experiences in mastering new skills. The algorithm dynamically adjusts the
ratio of deep and broad experiences based on the learning stage, using a value
evaluation network to control depth during initial learning stages and a parallel
structure to increase breadth when addressing path wandering phenomena. The
incorporation of a dense connection enhances the learning ability of the network model.
Experimental results demonstrate the superiority of the proposed algorithm over
traditional DQN algorithms, showcasing improvements in learning speed, path planning
success rate, and path accuracy. The study concludes by suggesting potential
applications of the algorithm in obstacle avoidance and aircraft navigation, with
future research focusing on further algorithm enhancements. The presented approach
stands out for its adaptability to discrete state spaces and its potential to expedite
the learning process in various scenarios

”A Hierarchical DDPG-DQN Framework for Robot Navigation in Large—-Scale Environments” :

This work addresses the challenge of robot navigation in novel environments by
introducing a hierarchical approach inspired by human navigation. Unlike existing
methods that either rely on precise high—level information or extensive learning from
interaction with the environment, the proposed approach utilizes a rough 2-D map to
navigate in unseen environments without the need for further learning. The key
contribution is the introduction of a dynamic topological map, initialized from the
rough 2-D map, and a high—level planning method to propose reachable 2-D map patches
between start and goal locations
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To utilize the proposed 2-D patches, a deep generative model is trained to generate
intermediate landmarks in the observation space. These landmarks serve as subgoals for
low—1level goal-conditioned reinforcement learning. Notably, the low-level controller
is trained solely on local behaviors in existing environments (e.g., crossing
intersections, turning left at corners). This framework enables generalization to
novel environments with only a rough 2-D map, eliminating the need for additional
learning. Experimental results demonstrate the effectiveness of the proposed framework
in both familiar and unseen environments

Navigation robot training with Deep Q-Learning monitored by Digital Twin:

This paper focuses on the application of the Deep Q-learning algorithm to enhance the
movement and task execution capabilities of a vehicular navigation robot. The primary
objective of the robot is to autonomously transport parts within a confined environment
containing various obstacles. The authors developed a decision system based on the
Deep Q-learning algorithm, incorporating an artificial neural network that utilizes
sensor data for autonomous navigation. The article details the application process and
experimental outcomes of the DQN algorithm, showcasing the results of the learning
process. Notably, the paper introduces the concept of digital twins to monitor the
robot’ s movement and signals, which are transmitted to a Cloud service. This innovative
approach enables the visualization of navigation through augmented reality, providing
a comprehensive and technologically advanced perspective on the robot’ s performance
and learning outcomes.

”An autonomous navigation approach for unmanned vehicle in outdoor unstructured terrain
with dynamic and negative obstacles” :

This paper addresses the challenges of autonomous unmanned ground vehicle navigation
in unstructured environments, with relevance to scenarios involving search and rescue
robots, planetary exploration robots, and agricultural robots. The proposed method
relies on terrain constraints to navigate through such environments. The authors
introduce an approach that involves efficient path search and trajectory optimization
on an octree map, aiming to generate trajectories that can navigate off-road
landscapes, avoiding various obstacles like dynamic and negative obstacles to reach a
predefined destination. Empirical experiments conducted in both simulated and real
environments demonstrate that the proposed method outperforms traditional 2-
dimensional or 2.5-dimensional navigation methods, particularly excelling in dynamic
obstacle avoidance tasks and mapless navigation tasks

”Success weighted by completion time: a dynamics—aware evaluation criteria for embodied
navigation” :

This paper introduces a novel metric, Success weighted by Completion Time (SCT)

designed to evaluate the navigation performance of mobile robots. Unlike the commonly
used Success weighted by Path Length (SPL), which has limitations in assessing agents
with complex dynamics, SCT explicitly considers the agent’s dynamics model. The focus
is on unicycle-cart dynamics, aligning with the dynamics of popular mobile robotics
platforms. The paper presents RRT*-Unicycle, an algorithm tailored for unicycle
dynamics, estimating the fastest collision—free path and completion time from a
starting pose to a goal location in environments with obstacles. Deep reinforcement
learning and reward shaping are employed to train and compare agents with different
dynamics models, demonstrating that SCT effectively captures the advantages of a
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unicycle model in navigation speed over simpler models like point—turn dynamics.
Moreover, the paper successfully deploys trained models and algorithms in real-world
scenarios, showcasing generalization capabilities in a zero—shot manner as agents
navigate an apartment with a real robot

Intelligent navigation of indoor robot based on improved DDPG algorithm” :

This paper introduces an autonomous online decision—making algorithm based on deep
reinforcement learning to address the challenge of indoor robot navigation in large-—
scale, complex, and unknown environments. Traditional path planning methods relying
on environment modeling are replaced with a combination of sensors detecting obstacles
and the DDPG (deep deterministic policy gradient) algorithm. This integration enables
robots to autonomously navigate and distribute tasks without the need for environment
modeling. The proposed algorithm preprocesses learning samples with Gaussian noise to
enhance the agent’ s adaptability to noisy training environments, improving robustness
Simulation results demonstrate the efficiency of the optimized DL-DDPG algorithm in
online decision—making for indoor robot navigation, allowing for autonomous and
intelligent control.

In conclusion, the paper highlights the increasing significance of the path planning
problem in robotics. Traditional algorithms, dependent on environmental modeling, are
limited to static off-line environments and struggle with complex distribution
scenarios. Deep reinforcement learning, with its strong perception and decision—making
abilities, is identified as a promising approach for path planning in dynamic
environments. The proposed algorithm in this paper achieves direct control from
environmental perception to action output through end—to—end learning, incorporating
sensors based on the partially observable Markov model. The DL-DDPG strategy introduces
noise to enhance the robot’s decision-making robustness. While the simulation results
are promising, the authors acknowledge the need for real-world testing in more complex
environments, proposing future research involving real image perception equipment and
convolutional neural networks to further improve model applicability

Research on dynamic path planning of mobile robot based on improved DDPG algorithm.
Mobile Information Systems:

This paper addresses the challenges of low success rates and slow learning speeds in
the Deep Deterministic Policy Gradient (DDPG) algorithm for mobile robot path planning
in dynamic environments. An enhanced DDPG algorithm is proposed, incorporating the
RAdam algorithm as a replacement for the neural network optimizer, and integrating the
curiosity algorithm to improve success rates and convergence speed. Priority experience
replay and transfer learning are introduced to further enhance training effectiveness.
Through the establishment of a dynamic simulation environment using the ROS robot
operating system and Gazebo simulation software, the improved DDPG algorithm is
compared to the original DDPG algorithm for dynamic path planning tasks. Simulation
results demonstrate a 21% increase in convergence speed and a 90% success rate for the
improved DDPG algorithm compared to the original DDPG algorithm. The proposed algorithm
proves to be effective in dynamic path planning for mobile robots with continuous
action spaces, showcasing improved adaptability and performance

Path planning of mobile robot in unknown dynamic continuous environment using reward -
modified deep q - network. Optimal Control Applications and Methods:

This article focuses on the path planning challenge for a mobile robot operating in
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an unknown dynamic environment (UDE) through the creation of a continuous dynamic
simulation environment. The paper employs the reinforcement learning theory with a
deep Q-network (DQN) to enable the robot to learn optimal decisions for achieving a
collision—free path in the UDE. A specifically designed reward function, incorporating
weight, is implemented to strike a balance between obstacle avoidance and reaching the
goal. The study identifies those abnormal rewards, arising from relative motion between
moving obstacles and the robot, can potentially lead to collisions. To mitigate this
issue, two reward thresholds are introduced to modify abnormal rewards, resulting in
successful obstacle avoidance and goal attainment in experiments. Additionally, the
article explores the application of double DQN (DDQN) and dueling DQN, comparing the
outcomes of reward—modified DQN (RMDQN), reward-modified DDQN (RMDDQN), dueling RMDQN,
and dueling RMDDQN. The conclusion asserts that RMDDQN yields the best results among
the tested variants

Reinforcement learning for self-exploration in narrow spaces” :

In the context of navigating narrow spaces, the traditional hierarchical autonomous
system, when relying on mapping, localization, and control processes, may lead to
collisions, especially in the presence of noises. Moreover, it becomes disabled when
operating without a map. This paper addresses these issues by employing deep
reinforcement learning for self-decision—making in narrow spaces without a map, with
a focus on collision avoidance. The approach is demonstrated using the Ackermann-—
steering rectangular—shaped Zebral robot in its Gazebo simulator.

The proposed methodology introduces a rectangular safety region to represent states
and detect collisions specifically tailored for rectangular—shaped robots. A well-
thought—-out reward function for reinforcement learning is crafted, eliminating the
need for destination information. Five reinforcement learning algorithms, namely DDPG,
DQN, SAC, PPO, and PPO-discrete, are benchmarked in a simulated narrow track. After
training, the DDPG and DQN models exhibit strong performance, successfully transferring
their learned capabilities to three new simulated tracks and further to three real-
world tracks. This suggests the effectiveness of the deep reinforcement learning
approach in autonomous exploration and collision avoidance in confined spaces, even
without relying on pre—existing maps.

An optimized path planning method for coastal ships based on improved DDPG and DP.
Journal of Advanced Transportation:

This paper addresses the limitations of existing Deep Reinforcement Learning (DRL)-
based methods in coastal ship path planning, particularly in terms of the algorithm’ s
inability to learn optimal strategies due to discrete action spaces and a lack of
consideration for historical state information. The proposed solution combines an
improved Deep Deterministic Policy Gradient (DDPG) with the Douglas - Peucker (DP)
algorithm for optimized path planning. The introduction of Long Short-Term Memory
(LSTM) enhances the DDPG network structure, leveraging historical state information
to improve the accuracy of predicted actions. The reward function of traditional DDPG
is also refined through mainline and auxiliary components to enhance learning
efficiency and convergence speed. An improved DP algorithm further optimizes the
planned path to address the issue of excessive turning points, promoting safer and
more economical navigation. Simulation experiments validate the method s effectiveness
in terms of path planning and convergence trends, demonstrating its capability to plan
safe, economical paths with stability and convergence. The conclusions highlight the
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proposed method’ s advantages in terms of path length and number of inflection points
compared to other algorithms. However, the paper acknowledges the need for future
research to address dynamic obstacles at sea and collision avoidance operations when
ships encounter each other during voyages

An autonomous path planning model for unmanned ships based on deep reinforcement
learning. Sensors:

This paper introduces an autonomous path planning model for unmanned ships in unknown
environments using Deep Reinforcement Learning (DRL), specifically the deep
deterministic policy gradient (DDPG) algorithm. The model learns optimal action
strategies through continuous interaction with the environment and historical
experience data in a simulation environment. Navigation rules and ship encounter
situations are transformed into navigation-restricted areas, ensuring safe and
accurate path planning. Ship data from the Automatic Identification System (AIS) is
utilized to train the path planning model. An improved DRL, achieved by combining DDPG
with the artificial potential field (APF), is integrated into an electronic chart
platform for experiments. Comparative experiments demonstrate that the improved model
achieves autonomous path planning with good convergence speed and stability

The conclusions highlight the limitations of traditional path planning algorithms in
recycling historical experience data for online training, leading to less accurate and
smooth path plans. The proposed DDPG-based autonomous path planning method successfully
addresses these challenges. By combining APF with DDPG, an improved DRL approach is
presented, showing faster convergence speed, increased accuracy, continuous operation
output, and reduced navigation errors compared to classical DRL methods. However, the
paper acknowledges the absence of consideration for the ship’s motion model and the
actual verification environment. The focus of future research is outlined to address
these aspects and validate the proposed method in a real, complex sea environment.

Asynchronous episodic deep deterministic policy gradient: toward continuous control
in computationally complex environments:

This article presents an extension of the deep deterministic policy gradient (DDPG)
algorithm called asynchronous episodic DDPG (AE-DDPG), addressing issues of data
insufficiency and training inefficiency, particularly in computationally complex
environments. AE-DDPG introduces an asynchronous data collection scheme, aiming for
more effective learning in less training time. The modification involves redesigning
experience replay with episodic control, allowing the agent to quickly latch onto
valuable trajectories. Additionally, a new type of noise in action space enhances
exploration behaviors. Experimental results demonstrate that AE-DDPG outperforms
popular reinforcement learning (RL) algorithms in tasks involving computationally
complex environments, achieving higher rewards with reduced time consumption. The
effectiveness of each proposed technique is further verified through an extensive
ablation study. In MuJoCo environments, AE-DDPG not only attains higher rewards but
also exhibits two to four times improved sample efficiency compared to other DDPG
variants. The article emphasizes the versatility of AE-DDPG across different
environments and underscores its potential in enhancing sample efficiency and training
stability in RL tasks.

Probability Dueling DQN active visual SLAM for autonomous navigation in indoor
environment”:
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This paper introduces a novel approach to improve obstacle identification speed using
the Monodepth method and enhances path optimization with the Probability Dueling DQN
algorithm for faster navigation compared to the traditional Dueling DQN algorithm. The
proposed method is integrated into an active simultaneous localization and mapping
(SLAM) framework designed for autonomous navigation in indoor environments with both
static and dynamic obstacles. This framework combines a path planning algorithm with
visual SLAM to reduce navigation uncertainty and create an environment map.

The results indicate that the proposed method outperforms the existing Dueling DQN in
addressing navigation uncertainty in real-world indoor environments with varying
numbers and shapes of static and dynamic obstacles. The novelty of this approach lies
in the active SLAM framework, incorporating the Probability Dueling DQN algorithm,
which represents an improved path planning strategy based on Dueling DQN. The framework
is further enhanced by utilizing the Monodepth depth image prediction method for
quicker obstacle identification. Overall, this integrated approach demonstrates
effective autonomous navigation capabilities in diverse indoor environments

A Study on the Effect of Parameters for ROS Motion Planer and Navigation System for
Indoor Robot” :

This study focuses on the autonomous navigation of office assistant robots within
office environments, a rapidly growing sector in the service robot industry. Navigation
algorithms and motion planners, essential components for enabling autonomous movement,
were implemented on these robots using the Robot Operating System (ROS). The study
evaluates and compares the performance of different global and local planners on a
robot in both simulation and real-world environments

Two global planners, A% and Dijkstra algorithms, were implemented and tested, along
with two local planners, Dynamic Window Approach (DWA) and Time Elastic Band (TEB)
algorithms. The experiments aimed to assess the impact of various planners and
parameters on the robot’s performance. Results indicate that both A* and Dijkstra
algorithms can achieve the required performance for office robot applications

Additionally, the Time Elastic Band (TEB) algorithm outperforms the Dynamic Window
Approach (DWA) as a local planner, demonstrating superior feasibility in avoiding
dynamic obstacles during the conducted experiments. These findings provide insights
into the effectiveness of different navigation strategies for office assistant robots

contributing to advancements in the service robot industry.

Temporal Consistency—-Based Loss Function for Both Deep Q-Networks and Deep
Deterministic Policy Gradients for Continuous Actions”:

In this study, the focus is on enhancing the stability of deep reinforcement learning
(DRL) algorithms, specifically deep Q-networks (DQNs) and deep deterministic policy
gradients (DDPGs), applied to power grid control and energy management in building
automation. The common practice of using replay buffers and target networks with a
delayed temporal difference backup to minimize loss functions in DRL is acknowledged,
but the study addresses the limited exploration of techniques for improving these loss
functions in both DQNs and DDPGs. The proposed modification introduces a novel temporal
consistency (TC) loss function, adapted for target network updates in both DQN and
DDPG, with particular emphasis on the critic network in DDPG. Experimental results in
OpenAl Gym environments, including “cart-pole” and “pendulum,” demonstrate
significantly improved convergence speed and performance, especially in the critic
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network of DDPG.

The conclusion emphasizes the contribution of the proposed TC loss function as a family
of target-based temporal difference learning. The flexibility of the target network
update in dealing with estimate—true value mismatches is highlighted, showcasing the
adaptability of the TC loss function in both DQN and DDPG. While the TC loss function
exhibits noteworthy improvement in continuous environments with DDPG, its performance
in DQN is not as pronounced, though statistically validated. The study underscores the
potential applicability of the proposed TC loss functions in applications such as
autonomous voltage control and load shifting. The authors suggest that, with further
improvements in DQN, the efforts can be applied to DDPG, considering both as off-
policy temporal difference learning algorithms.

”A Neural Network Approach to Navigation of a Mobile Robot and Obstacle Avoidance in
Dynamic and Unknown Environments”:

This paper addresses the challenging problem of mobile robot navigation and obstacle
avoidance in dynamic and unknown environments. The complexity arises from the need for
real-time interaction with the surroundings, limited sensing range, inaccurate data,
and noisy sensor readings. The proposed solution employs a neural network approach
integrated with statistical dimension reduction techniques to achieve precise and
efficient robot navigation and obstacle avoidance. To enhance the speed and accuracy
of network learning while reducing noise, kernel principal component analysis is
applied to the training patterns of the network. The method utilizes two feed—forward
neural networks based on function approximation with a backpropagation learning
algorithm. Training is conducted on two different datasets, using 180° laser range
sensor (SICK) readings to visualize the robot’s environment. Experimental results on
real-world data demonstrate the effectiveness of the proposed method, validating its
capabilities in enhancing the speed, precision, and noise reduction in robot navigation
and obstacle avoidance.
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Master’ s student’s explanation of the revised topic report
1. Teacher Liu: There is a mismatch between the thesis title and the research content.

Modification: Based on the research content, considering that the final output of the
research is the control action of the driverless car, the original title "Research on End-
to—End Path Planning Algorithm Based on Surround Vision” is not very accurate, so the title
is changed to “End-to—End Path Planning Algorithm Based on Surround Vision” Research on end-
to—end motion planning methods

2. Teacher Liu: Does the main question 3 to be solved in the dissertation have
theoretical support from relevant literature?

Modification: By reviewing the literature, we searched for end-to—end autonomous
driving papers in 2022, found theoretical support, and provided theoretical foundations and
problem—solving ideas for this academic paper research. According to the reference
literature, it is reasonable to rely on and lay the foundation for the next scientific
research work.

3. Teacher Guo: Different robot motion structures have different control algorithms.
How to achieve unified comparison?

Solution: Current end—to—end autonomous driving research based on surround vision is
trained, tested, and verified on the more authoritative carla simulation platform. The
simulation platform has defined the motion structure of autonomous vehicles to avoid
experimental comparisons with unmanned vehicles. The problem of inconsistency in the car’s
motion structure
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