
Chapter One Introduction

1

Chapter 1

Introduction

1.1 Introduction

 In our daily digital society, data has turned into valuable assets across many

industries, however, data possess different challenges with difficulties, particularly

in the context of IoT. As cloud storage solutions become frequently flexible

substitute for traditional storage solutions. Storing capacity in the cloud is an easy

solution for applications that are connected and linked to the Internet of Things

because, it offers an huge quantity of capacity, accessibility, and security as well. In

conclusion, the result of the combination of artificial intelligence which is known

throughout the world (AI) and also cloud platforms, the potential of Internet of

Things which can be written as (IoT) data is further expanded, which makes easy

way effective mining and analysis. In the Internet of Things called (IoT), integrated

intelligence makes it possible for detectors for collecting and analyzing data or

information, which in turn transforms operations in a very wide and vast range of

businesses and companies. To process and storing this information and info with

greater ease cloud storage make it possible , which may result in opening the door

to new opportunities and chances for improved operations and insights. [1] Cloud

storage provides a number of benefits in the context of the Internet of Things;

nevertheless, Particularly with regard to security, and administrative control, it has

a number of downsides. Therefore it is more risky too because, when confidential

information is handed to third-party vendors, there is a significant risk that the data

will not be protected and will not be accurate which is noteworthy. Furthermore, In

addition, problems such as the transfer of info and the dependence on internet

connectivity need to be tackled simultaneously. [2] Although, A number of

advantages are provided by cloud storage, such as cost-effectiveness, scalability, and

disaster recovery, but similarly on the other hand it has disadvantages too, such as

Chapter One Introduction

2

the inability to govern info, being locked in with a single vendor, and also common

connectivity issues. Considering incorporating cloud storage options into

applications for the Internet of Things organizations, they should be aware of both

the benefits (advantages and disadvantages) and the limitations associated with each

option. [3] In a nutshell, fundamentally revolutionize the way data management is

handled in Internet of Things systems cloud storage has the ability, in the same

manner, it also has the ability to ensure both advantages and downsides. Enterprises

are able to leverage cloud storage to fully realize the possibilities of Internet of

Things (IoT) data, while simultaneously guaranteeing security and efficacy in their

activities and processes. This is accomplished by careful evaluation of its

repercussions and resolution of any potential drawbacks the organization may

encounter. [4]

Figure 1.1: Cloud Storage [3]

The intersection of Internet of Things (IoT) and cloud storage, explores IoT devices' data

generation and transmission to cloud servers, emphasizing key components like sensor networks,

edge computing, and cloud infrastructure, functions such as data aggregation, processing, and

storage in the cloud are analyzed for their efficiency, security, and scalability. The study aims to

uncover strategies for optimizing IoT-cloud interactions, addressing challenges like latency,

bandwidth, and privacy concerns.

Chapter One Introduction

3

1.2 Storage mechanism of Cloud

 As the cloud have limited amount of storing capacity, so the use of duplicate data

makes the system to used up and cause problems when it comes to handle the data.

Data deduplication is the best method that researchers have found for addressing

issue, however they have looked into many different approaches. To enhance

storage, the method known as data deduplication was created [77]. This tactic is

being employed by a number of cloud service providers, such as Dropbox, Amazon

S3, and Google Drive. Making sure that data is never uploaded to the cloud more

than once helps avoid data duplication.

A. The requirement for more storage capacity increases as the volume of digital data

increases.

 B. There is no built-in safeguard against duplicate data being stored in traditional

solutions.

C. Data De-duplication is critical for removing redundant data and lowering storage

costs.

 The quantity of data generated is growing exponentially in quickly developing

digital age. The demand for more storage space has grown as more areas of life, from

social media interactions to business transactions, are becoming digitalized. This

article looks at how inadequate present storage capabilities are for keeping up with

the rate of expansion in digital data and the significance of finding a solution.

● A Partial Solution: The increased need for storage space has a partial solution

in the form of cloud storage. Cloud service providers can offer scalable

storage options to consumers and businesses by utilising the enormous

capabilities of data centres. This method, however, has its own set of

drawbacks, such as worries about data privacy, security lapses, and

dependence on outside sources [9]. Additionally, the cost of storing

Chapter One Introduction

4

significant amounts of data on the cloud can rise significantly, particularly for

long-term retention.

● Explosive Growth of Digital Data: The internet's rising use, the widespread

use of smartphones, and the rise of connected gadgets have all contributed to

the digital revolution's data explosion. The amount of digital data is always

growing because of all online interactions, transactions, sensor readings, and

media uploads.

● New Technologies for Data-Intensive Systems: The problem with storage is

made worse by the emergence of data-intensive technologies like artificial

intelligence, machine learning , and big data analytics. Massive datasets are

needed for these applications in order to build models and gain insightful

knowledge. Additionally, the growing use of virtual reality, augmented

reality, and high-definition multimedia content puts extra pressure on storage

infrastructure by necessitating higher capacity and quicker data retrieval.

The lack of storage capacity is becoming an urgent issue as the digital world

develops. Finding scalable and effective storage solutions is urgent given the

exponential growth of digital data and the rising demand for data-intensive

applications. While cloud storage provides a partial solution, research into next-

generation storage systems is necessary to make sure that the storage infrastructure

can sustain the ever-growing digital world [11]. It can fulfil the increasing need for

storage space and unleash every advantage of the digital age by making investments

in technology development and promoting innovation.

The problem of redundant information has grown significantly in importance in the

era of expanding digital data. Traditional storage solutions frequently do not have

built-in duplicate data management tools. The significance of data deduplication in

eliminating redundant data and lowering storage costs is highlighted in this article.

Chapter One Introduction

5

Duplicate data refers to information that is identical and spread across different

locations in a storage system. It may be caused by a number of things, including user

error, system backups, or data replication procedures [13]. Duplicate data not only

takes up valuable storage space, but it also drives up prices, slows down data

retrieval, and uses resources inefficiently. Hard disc drives (HDDs) and solid-state

drives (SSDs), two common types of traditional storage, lack built-in techniques for

locating and removing duplicate data. Organisations can considerably reduce their

storage needs by getting rid of duplicate data. However, ensuring that only one copy

of each piece of information is stored, data deduplication increases data efficiency.

Enhancing data integrity means reducing duplicate data [14]. Duplicate data can

cause conflicts and inconsistencies, jeopardising the accuracy and dependability of

data that is kept. Disaster recovery procedures might be hampered by duplicate data

since it increases backup and restore times. In today's data-driven world, adopting

data de-duplication is essential for effectively managing and maximising the value

of digital data.

1.3 Literature Survey

S. Luo and M. Hou in (2013) [24] offer a fresh approach to the chunk coalescing

algorithm (CCA), which determines the most basic and highest amount of subchunks

that must merge to create super chunks (SC). According to research,

strategies speeds data decoding in general and lowers expenses related to the chunk

coalescing (CC) process. The use of audiovisual data in a variety of uses in past

decades has led to problems with analytics, security, sharing, and optimization. This

review of the publications summarizes the results of four important studies on the

subject, with an emphasis on data analytics, security models, safe multimedia data

processing, and optimization methodologies in various contexts.

Chapter One Introduction

6

Krishnaprasad and B. A. Narayamparambil in (2013) [23] suggested a novel Dual

Side Fixed Size Chunking (DSFSC) algorithm to achieve a rising de-duplication

ratio for comparison to conventional FSC. Using this approach, the utilization of

audio and video files to produce best De-duplication ratio without requiring variable

space to chunk or content to be chunk. Storage management and energy expenses

will be reduced if the request for storage use is reduced.

W. leesakul et al. in (2014) [22] suggested dynamic data de-duplication (DD)

strategy for cloud storage, in order to strike a balance among changing storage

efficacy and criteria for fault tolerance, as well as to increase cloud storage

performance. adjust the number of copies of files in real time to match the changing

degree of QoS. The results of the experiments reveal that suggested scheme works

effectively and can deal with scalability issues.

R. Kiruba karan et al. in (2015) [18] present a cloud-based technique for achieving

de-duplication of a huge amount of data available. The approach includes data de-

duplication before uploading to cloud storage as well as data reverse de-duplication

when obtaining the required data. The model is more effective and accurate than

existing de-duplication systems because of the type of algorithm utilized.

V. Maruti et al. in (2015) [19] the main goal of this technique is to delete reiterate

data from the cloud. It can also aid in the reduction of bandwidth and storage space

usage. Each user has their own unique token and has been allocated various

privileges based on the duplication check. The hybrid cloud architecture is used to

achieve cloud de-duplication. The proposed technique is more secure and uses fewer

cloud resources. It was also demonstrated that, when compared to the standard De-

duplication technique, the proposed system had a low overhead in duplicate removal.

On this work, both content level and file level de-duplication of file data is examined

in the cloud.

Chapter One Introduction

7

X. Xu and Q. Tu, in (2015) [20] de-duplication scheme architecture for cloud storage

environments (CSE). DelayDedupe, a delayed target de-duplication strategy rely on

chunk-level de-duplication and chunk access frequency, is suggested to decrease

response time in storage nodes (S nodes). When used in conjunction with replica

arrangement, this technique evaluates whether fresh multiplied chunks for data

update are hot and, if they aren't, eliminates the hot duplicated chucks. The findings

of the experiment show that the DelayDedupe method may successfully minimize

response time while also balancing the storage demand on Nodes.

Y. Zhang in (2015) [21] Suggested a novel CDC algorithm indicated the

Asymmetric Extremum (AE) algorithm. The major idea behind AE is relies the

observance that in dealing with the boundaries-shift issue, the maximum value in an

asymmetric local domain is improbable to be exchanged through a novel extreme

value, which motivates AEs utilize of asymmetric (instead of symmetric, as in

MAXP) local domain to distinguish cut-points and attain high chunking throughput

while minimizing chunk size variance. According to the result, AE addresses the

issues of low chunking throughput in MAXP and Rabin, as well as excessive chunk-

size volatility in Rabin, at the same time. AE enhances the throughput speed of state-

of-the-art CDC algorithms by 3x while achieving equivalent or greater de-

duplication efficacy, according to experimental results that rely on four real-world

datasets.

W. Xia et al. in (2016) [16] suggest FastCDC, a Fast and effective CDC approach,

which constructs and enhances on the latest Gear-based on CDC technique, one of

the fastest CDC techniques to knowledge. Fast CDC’s main idea is to integrate five

key mechanics: gear-rely on rapid rolling hash, improving and simplifying Gear hash

(GH) verdict, skipping sub-minimal chunk cut-points, normalizing the chunk-size

distribution in a small specific region to address the issue of reduction de-duplication

Chapter One Introduction

8

ratio caused by cut-point skipping. FastCDC is around 10 times quicker than the best

open- source Rabin-based on CDC, and about 3 times greater than the state-of-the-

art Gear- and AE-rely on CDC, while obtaining almost the same de-duplication ratio

as the standard Rabin-rely solution, according to evaluation results.

X. Xu. et al. in (2016) [17] focus on non-center cloud storage data de-duplication

and present a new two-side data de-duplication (DD) mechanism. The Chord

algorithm (CA) is optimized. The suggested two-side data de-duplication (DD)

technique outperforms the traditional data de-duplication (DD) mechanism in terms

of de-duplication rate.

H. Wu. In (2018) [14] suggests a sampling-rely on chunking algorithm and improve

SmartChunker, a tool to predict the appropriate chunking configuration for de-

duplication schemes. Smart Chunk's effectiveness and efficacy have been

demonstrated in real-world datasets.

M. Oh et al., in (2018) [15] suggest novel de-duplication technique that is extremely

compatible and scalable with the exhausted storage currently in use. The approach

combines file system and de-duplication meta-information into a single object, and

it manages the de-duplication ratio online through initial aware of post-processing-

related scheme demands. When executing a variety of standard storage workloads,

the experimental findings illustrate that solution could save greater than 90% of total

storage space while providing the same or similar performance as traditional scale-

out storage.

N. Kumar and S. Jain in (2019) [11] suggest Differential Evolution DE-rely on

TTTD-P optimized chunking to maximize chunking throughput while increasing de-

duplication ratio DR The use of a scalable bucket indexing strategy minimizes the

time it takes to find and declare duplicated hash values (HV). It chunks about 16

Chapter One Introduction

9

times greater than Rabin CDC, 5 times greater than AE CDC, and 1.6 times greater

than FAST CDC (HDFS).

Y. Fan et al., in (2019) [12] system improves the capacity of like cryptosystems to

resist selected plaintext and selection ciphertext attacks by augmenting convergent

encryption with users' privileges and relying on TEE to provide secure key

management. system is secured sufficient to facilitate data de-duplication (DD) as

well as protecting the privacy of sensitive data, according to a security analysis.

Moreover, create a prototype of system and analyze its performance. Experiments

reveal that system overhead is practical in real-world scenarios.

H. A. Jasim and A. A. Fahad, in (2018) [13] novel fingerprint function (FF), a multi-

level hashing and matching mechanism, and a novel indexing technicality to hold

metadata to progress the TTTD chunking algorithm. These novel technicalities

include four hashing algorithms to handle the collision issue, as well as adding a

novel chunk stipulation to the TTTD chunking criterion to improve the number of

small chunks and hence the De-duplication Ratio.

Xu and W. Zhang in (2021) [10] QuickCDC improves CDC chunking speed, de-

duplication ratio, and throughput by combining three methods. Initially, QuickCDC

can move instantly to the chunk boundaries of duplicate chunks that arise frequently.

The mapping of the duplicate chunk's first n bytes and last m bytes to chunk length

must be registered. The first n bytes and last m bytes of the current chunk are checked

to see if they are in the mapping table when chunking is performed. QuickCDC can

skip relevant chunk lengths (CL) if they are in the mapping table. QuickCDC can

skip the minimal chunk length for unique chunks. Finally, QuickCDC may

dynamically alter mask bits length such that chunk length (CL) is permanently more

than the minimal chunk length and is distributed in a limited particular location.

When the current chunk length (CL) is less than the expected chunk length (CL),

Chapter One Introduction

10

should use longer mask bits, and when the current chunk length (CL) is more than

the expected chunk length (CL), should utilize shorter mask bits. Experiments show

that QuickCDC's chunking speed is 11.4x that of RapidCDC, and the associated de-

duplication ratio is somewhat increased, with a maximum de-duplication ratio

improvement of 222.3% and a throughput improvement of 111.4%.

K. Vijayalakshmi and V. Jayalakshmi in (2021) [7] suggest data duplication in

clouds, which is managed using the de-duplication technique. Although some de-

duplication techniques are used to prevent data redundancy, they are inefficient. The

major goal of this research is to gain enough knowledge and a decent concept of de-

duplication techniques through reviewing existent ways, and this work may aid

future research in establishing effective cloud storage management (CSM) solutions

for researchers.

M. Ellappan and S. Abirami in (2021) [8] suggest a novel chunking algorithm called

Dynamic Prime Chunking (DPC). DPC's major purpose is to modify the window

size during the prime value dynamically rely on the maximum and minimal chunk

size. DPC in the de-duplication scheme gives good throughput while avoiding large

chunk variance. The multimedia and operating system datasets were used for

implementation and experimental evaluation. Existing algorithms such as AE,

MAXP, TTTD, and Rabin have been compared to DPC. The performance indicators

looked at were throughput, chunk count, Bytes Saved per Second (BSPS), chunking

time, processing time and De-duplication removal Ratio (DER). BSPS and

throughput have both improved. To begin, DPC boosts throughput performance by

greater than 21% when compared to AE. BSPS improves performance by up to 11%

over the previous AE method.

P.Anitha et al. in (2021) [9] the secure authorities are given access control

mechanisms to do data de-duplication (DD) on the data that was outsourced.

Chapter One Introduction

11

Encryption techniques are used in the Access Control Mechanism. It employs

convergent randomised encryption and a reliable distribution of owning party keys

to allow the cloud service provider to manage outsourced data access even when

control shifts on a regular basis. The suggested technique safeguards data integrity

against attacks relies on label discrepancies. As a precaution, the suggested

technique has been changed to improve security.

In the year 2023, Dhar et al. proposed a very advanced and safe Security Model for

Multi-media Data or info Sharing (sending and receiving) in the Internet of Things

(IoT) context. However, methodology offers a comprehensive approach to secure

multimedia data flow in IoT ecosystems, that Internet of Things devices are

vulnerable to security breaches. Authentication, and encryption technologies in an

attempt to lower and minimize the risks linked with unauthorized access and data

breaches, for this purpose this study integrates access control. This research

emphasizes how robust security frameworks are essential to ensure the unique and

unknown challenges posed by sharing visual data in Internet of Things

environments.

In the year of 2022, Srinivasan et al. technique for medical purpose supply. They

focus on the important requirement for security when handling such sensitive cases

of medical info by proposing a method that ensures secure processing of multi-media

data. Encryption and access controls to safeguard patient privacy and stop

unauthorized access to medical records this approach is recommended for easy and

safe use. This analysis shows how crucial is security measures are to just maintain

data integrity and also confidentiality in medical applications or processes

Kumari and Tanwar in the year of (2022) provided a secure and very safe trusted

data analytics method intended for multi-media communication in a decentralized

smart grid architecture that is very useful. Therefore, decentralized environments

Chapter One Introduction

12

preserving data analytics processes their proposal addresses the challenge with a

focus on the energy industry. Further, with the combination of anomaly detection,

encryption, and authentication processes that enhances the security of multimedia

information analysis and transmission in smart grid networks. This knowledge

highlights the importance of safe data and information analytics in ensuring the

dependability and integrity of critical infrastructure systems.

The primary objective of Sharma et al. in the year of (2023) work on to maximize

multi-media information through computationally intelligent algorithms. Therefore,

their research and study examines the potential applications of the most worldwide

common and known artificial intelligence techniques to enhance the performance

and usefulness of multimedia systems. Hence, this proposed problem uses intelligent

methods such as machine learning and optimization algorithms just to optimize

multi-media information processing, storage, and retrieval. This study and research

illustrate how computational intelligence can be applied to address the difficulties or

circumstances linked with managing multimedia data and enhance system

efficiency.

The majority of the assessed studies highlight how crucial security, data analytics,

and optimization strategies are while managing multimedia data in a variety of

industries. These studies assist in the field of multimedia tools and applications by

providing insightful knowledge and useful techniques for tackling the difficulties

involved in the safe processing, distribution, and optimization of multimedia data.

Table 1.1: Comparison between studies over Data De-duplication & chunking

algorithm

S.

No.

Authors Algorithm/method/

Techniques

 Advantages Drawback

Chapter One Introduction

13

1 N. Kumar and

S. Jain 2019

Differential

Evolution (DE),

Two Thresholds

Two Divisors

(TTTD-P)

algorithm,

 Hash values

(chunks about 16

times greater

than Rabin CDC,

5 times greater

than AE CDC,

and

(1.6) times

greater than

FAST CDC

Take too much

time to

calculate the

hash value.

2 W. Leesakul

et al. 2014

Dynamic Data De-

duplication

 experiments

reveal that our

proposed system

works effectively

Cannot work

with the

encryption

keys

3 Y. Fan et al.

2019

De-duplication

system that includes

the processes of

duplicate checking

 implement the

security analysis

and also

performance

evaluation is

effective and

feasible in

practice

Take too much

processing

power of the

system and

consume more

power

4 M. Oh et al.

2018

A novel

de-duplication

technique

 experimental

findings illustrate

that our solution

could save

greater than 90%

of total storage

space

It will occupy

more than

20% more

storage than

other

algorithms

5 P. Anitha et

al. 2021

secure rising

scalable data de-

duplication

architecture

 The system is

virtually as

successful as the

existing ones

(minor increase

Risk factors

high

Chapter One Introduction

14

in computational

overhead)

6 R. Kiruba

karan et al

2015

a cloud-rely

technique for de-

duplication of huge

data

 The model is

more efficient

and accurate

compared to that

of the existent

de-duplication

techniques.

The model is

efficient but it

is too

expensive.

7 M. V. Maruti

et al. 2015

novel duplication

check technique that

configuration the

token for the private

file

 the system

achieve is 98 %

Consume

more power

for execution

8 K.

Vijayalakshmi

and V.

Jayalakshmi

2021

data duplication

(DD) in clouds

 the system

achieves efficient

knowledge and a

good idea

concerning de-

duplication

techniques

Can not

manage TB of

data in the

cloud

environment

9 X. Xu et al

2016

two- side data de-

duplication (DD)

technique, Chord

algorithm

 two-side data de-

duplication (DD)

technique

outperforms the

traditional data

de-duplication

technique in

terms of de-

duplication rate

Can not

manage more

than 50 VMs

Chapter One Introduction

15

10 X. Xu and Q.

Tu 2015

de-duplication

scheme architecture

for cloud storage

environments (CSE)

 Delay Dedupe

method may

successfully

minimize

response time

while also

balancing the

storage demand

on Snodes

algorithms

often lack

comprehensive

validation and

may not be

well-

understood by

the research or

practitioner

communities

11 M. Ellappan

and

S. Abirami

2021

Dynamic Prime

Chunking (DPC),

Existing algorithms,

 DPC's durable

performance

over the another

existent

algorithms in

terms of BSPS

and the efficacy

of the backup

storage scheme

Storage and

cost high

12 H. A. Jasim

and

A. A. Fahad

2018

a novel fingerprint

function (FF),

 good de-

duplication ratio

and rapid

execution time,

efficacy of the

suggest

algorithm was

evaluated

utilizing two

relatively

datasets

Efficiency

increases but

attack rate is

high

Chapter One Introduction

16

13 W. Xia et al.,

2016

FastCDC, a Fast

and effective CDC

approach

 FastCDC is

around 10 times

quicker than the

best open-source

Rabin- based on

CDC, and about

3 times greater

than the state-of-

the-art Gear- and

Algorithms in

terms of

Chunk and the

efficacy of the

backup storage

is less

14 Z. Xu and W.

Zhang 2021

Content Defined

Chunking (CDC)

 Show that

QuickCDC's

chunking speed

is 11.4x that of

RapidCDC, and

the associated

de-duplication

ratio is

somewhat

increased, with a

maximum de-

duplication ratio

improvement of

222.3%

drawback of

the Content-

Defined

Chunking

(CDC)

algorithm is its

potential

sensitivity to

changes in data

patterns.

15 S. Luo and M.

Hou 2013

a new chunk

coalescing.

algorithm (CCA)

 demonstrate that

our algorithm

eliminates the

expenses of the

chunk coalescing

procedure and

enhance the

efficacy of hash-

comparison

CCA may not

perform

optimally

across all

types of data

or workloads.

It is primarily

designed to

reduce

redundancy in

Chapter One Introduction

17

1.4 Research Problem

 The Internet of Things' (IoT) explosive growth has completely changed how data

is created, shared, and used, opening up previously unheard-of possibilities for

efficiency and creativity in a wide range of industries. Nonetheless, a number of

difficulties have emerged as a result of the smooth integration of IoT devices with

cloud computing platforms, mainly in relation to the administration and storage of

enormous amounts of data produced by IoT devices. Under this situation, the

creation of a trusted and safe data storage system specifically designed for cloud-

based Internet of Things applications is the urgent research challenge. There are

several challenges facing data storage in these types of contexts today, from privacy

and data security issues to process efficiency for storage and retrieval.

similar

chunks, so it

may not be as

effective for

datasets.

16 H. Wu et al.

2018

a sampling-based on

chunking algorithm

and improve

SmartChunker

 illustrate that a

sampling-based

chunking

algorithm and

enhance

SmartChunker

application-

specified chunk

configurations

The

algorithm's

efficiency can

be

compromised

if the chosen

sampling

strategy

introduces

bias, leading

to suboptimal

chunk

boundaries

and reduced

effectiveness

Chapter One Introduction

18

Ensuring the privacy and security of Internet of Things data while it is stored in the

cloud is the most crucial consideration. Since, a significant quantity of this

information is very sensitive—that is, because it contains private and personal

information—severe security measures must be implemented to guard against

hostile attacks, illegal access of unknown to data and privacy, and data breaches.

Furthermore, for making security obligations more complicated legal frameworks

such as GDPR and HIPAA makes data security obligations possible that no one can

access easily. In addition, in cloud-based Internet of Things system, there are

numerous challenges concerning the scalability and accessibility of data storage

options. Due to the growing number of IoT devices the data volume has increased

exponentially, making it challenging for standard storage systems to meet the

requirements and needs for scalability and efficiency. Consequently, the

development of innovative solutions that can highly available and dependable scale

storage resources in response to changing workloads is essential. To improve and

make better the system's overall effectiveness and performance, it is also important

to optimize the retrieval and storage techniques and methods. IoT-generated data can

range widely and vast, from multi-media content to real-time detectors readings,

therefore, storage mechanism designs need to be adaptable enough to accommodate

various data kinds and access patterns. Hence, data retrieval algorithms specifically

designed for cloud-based IoT systems, data storage architectures and includes

researching state-of-the-art info indexing methods. To confront these intricate

challenges, a holistic approach by the combination technological innovation, robust

security protocols, regulatory adherence, and also efficient resource allocation is

needed. We can make possible due to the most of IoT technology while lowering

and minimizing associated risks and ensuring the security and integrity of sensitive

data or personal data by developing a very safe, trusted and effective data storage

Chapter One Introduction

19

system for cloud-based Internet of Things applications. This project of research will

open the door to a more resilient, secure or safe, and networked digital world by

significantly influencing that how the cloud computing and Internet of Things

ecosystems evolve in the future.

1.5 Research Objectives

The goal of this research is to create a new, effective system for Internet of Things

and cloud storage environments. The suggested method is intended to attract interest

in massive text, picture, and video storage systems. Therefore, in order to fulfill the

research goal, the following criteria are developed:

1) For designing a mechanism just to improve the performance of a large storage

system by only applying the de-duplication technique or method.

2) To assess how effectively the suggested mechanism performs in a simulated

setting in contrast to existing solution.

3) To confirm and verify the suggested approach using the findings from

simulation studies to guarantee that it’s application is correct.

1.6 Contribution of the Research

Middleware is another piece of software that the central server uses to allow the

networked machines to communicate with each other.

1) Mechanism Design: The study suggests a method for cloud storage in internet of

things settings, focusing performance improvement via the use of deduplications

strategies. This strategy attempts to solve a major issue in large-scale storage

systems by optimizing resource use and lowering the cost of storage.

2) Performance Evaluation: In simulated scenarios the research does through

performance evaluations of the suggested mechanism in comparison to current

solutions. Through an in-depth assessment of its effectiveness scalability and also

reliability, the study offers insightful information on how well the suggested approach

works in practical applications.

Chapter One Introduction

20

3) Validation and Verification: By means of meticulous validation and verification

procedures grounded in simulation tests, the study guarantees the accuracy and

efficacy of the suggested method. Through functional and performance verification

against pre-established benchmarks, the study validates the suggested solution’s

viability and reliability and realistic implementation in cloud-based IoT systems.

1.7 significance of the research

By improving security and privacy protections within the suggested mechanism, the

research directly addresses Objective. The successful resolution of the challenge

surrounding an efficient secured data storage method for cloud-based IoT promises

to bring about a plethora of crucial. Achieving heightened security ensures the

protection of IoT-generated data stored in the cloud, aligning with the objective to

design a mechanism to improve large storage system performance through

deduplication techniques. As the proposed mechanism ensures secure and efficient

data storage, it directly contributes to instilling greater confidence in the utilization

of IoT technologies, supporting Objective. Organizations and individuals will trust

IoT applications more knowing their data is securely stored, thereby validating the

mechanism's performance in comparison with existing solutions. The enhanced

accessibility and reliability of IoT data resulting from the proposed mechanism

directly support Objective through verification and validation processes, the research

confirms the correctness and effectiveness of the mechanism, ensuring its reliability

in storing and retrieving data seamlessly. Efficient resource utilization, including

cost and energy savings, is a direct outcome of the proposed mechanism, in line with

Objective by optimizing storage efficiency through deduplication techniques, the

mechanism minimizes resource wastage, contributing to the performance

improvement of large-scale storage systems. The proposed mechanism's ability to

seamlessly scale to accommodate increasing volumes of IoT data aligns with

Chapter One Introduction

21

Objective through simulation experiments and performance evaluations, the

research verifies the mechanism's scalability, ensuring its suitability for evolving IoT

deployments without storage limitations.

1.8 Outlines of Thesis

The following chapters are presented in this thesis: Chapter One presents the basic

introduction, problem statement, methodology objective of the study and some other

aspects. Chapter Two presents the theoretical background. It theoretically explains

the method and techniques used in this study. The proposed methods or

methodology used in this study will be depicted in Chapter Three. The collected

methods, techniques, algorithms collected in the proposed methodology will be

analyzed in this chapter. The primary outcomes of the proposed system employing

various strategies are shown in Chapter Four. The findings are given separately for

each model. Chapter Five summarises the results reached throughout this thesis,

overall conclusion derives from the study and briefly lists potential future works .

Chapter Two

Theoretical Background

Chapter Two Theoretical Background

23

Chapter 2

Theoretical Background

2.1 Performance Metrics and its Types:

Cloud storage in IoT setup has become essential for data management in daily based

linked society. However, the performance of this data storage is just important for

implementation success. IoT context have examined the verities in term of efficiency

measure.

1. Throughput: In this way the transmitted and received data retrieved from cloud

storage system. For fast analysis and processing in IoT environments, throughput

matrices assess the system’s ability for leading smooth operations and insights.

2. Latency: Latency is also known as lag of between data reception and transmission

and to know how much effective is the IoT apps are. Low latency is used to require

instantaneous data processing such as real time controlling and monitoring. IoT

functions as efficiently and with the least amount of latency possibility.

3. Availability: This shows how easy it is to access the data stored in the cloud. High

availability is needed to ensure continuous access to relevant information in the

context of the Internet of Things, where data accessibility is crucial for decision

making and operations. To sustain the continuous availability of data and to avoid

interruptions, Availability metrics look at the reliability of cloud storage

infrastructure which includes backup and redundancy systems.

4. Scalability: Scalability matrices measure the performance and resources usage as

data over time alter. Scalable solutions are more important because of the needs in

dynamic IoT environments where quantities might change quickly.

5. Reliability: Reliability is used for measuring the capacity of cloud storage and its

performance in the prediction manner over the passage of time. IoT is consistent and

reliable storage solution that maintain the data integration.

Chapter Two Theoretical Background

24

2.2 Data Deduplication

Across several cloud storage system data duplication is the existence of redundant

data and IoT devices. As the operation of cloud based IoT systems the optimization

storage resources and computations speeds is essential to solve the problem. In order

to effectively identify and delete duplicate data, sophisticated algorithms and

techniques are used in cloud IoT systems [25]. Proliferation of IoT devices and also

managing their effectively is crucial task. De duplication method like indexing

metadata and hash based comparisons can be used to save network and bandwidth

spaces. Data duplication can be enhanced by data analysis and decision-making,

promotes data security and privacy compliance, and enables the seamless integration

of IoT technologies in various industries and applications [26].

(a) Fig: 2.1 Data Duplication [78]

Data duplication like identifying and vanishing redundant samples of the data can

be shown in the data duplication graphics. It entails operations such as

Chapter Two Theoretical Background

25

segmenting the data into digestible chunks, identifying unique chunks, and

substituting references to the unique chunks for superfluous ones. Below graphs

also illustrate that how data deduplication improves efficiency of storage and

transport of networks by transferring and storing.

(b) Fig: 2.1 Data Duplication [79]

Data duplication figure also find out many techniques and ways for large scale

storage system. It provides examples of chunking, indexing, hashing, and algorithms

for identifying duplication. It also analyses that how techniques are stored overhead

and boosted in cloud system.

Figure 2.1: (a, b & c): Data De-duplication [28]

Chapter Two Theoretical Background

26

Following are the hashing algorithms and techniques in the context of IoT and cloud

storage.

SHA-256 (Secure Hash Algorithm 256): Widely used for its robustness and security,

SHA-256 generates a fixed-size 256-bit (32-byte) hash. In IoT applications, SHA-

256 can be employed to securely hash sensitive data before transmission to the cloud

for storage. This ensures data integrity and confidentiality.

MD5 (Message Digest Algorithm 5): While less secure than SHA-256 due to

vulnerabilities, MD5 is still utilized in certain IoT systems for its simplicity and

speed. However, its usage is diminishing in favor of more secure alternatives due to

collision vulnerabilities.

HMAC (Hash-based Message Authentication Code): HMAC combines a

cryptographic hash function (such as SHA-256) with a secret key to provide data

integrity and authenticity. In IoT scenarios, HMAC can be applied to verify the

integrity of data exchanged between IoT devices and cloud storage, preventing

tampering or unauthorized access.

Salted Hashing: This technique involves adding a random value (salt) to the input

before hashing, enhancing security by mitigating precomputed hash attacks. IoT

devices can utilize salted hashing when storing sensitive credentials or personal

information in the cloud, making it more challenging for attackers to reverse-

engineer the original data.

Bloom Filters: While not a traditional hashing algorithm, Bloom filters are

probabilistic data structures used to efficiently test whether an element is a member

of a set. In IoT applications, Bloom filters can assist in reducing the computational

overhead of searching for specific data items stored in the cloud, thereby optimizing

resource utilization in resource-constrained IoT environments.

Chapter Two Theoretical Background

27

These examples illustrate how various hashing algorithms and techniques can be

leveraged to enhance security, integrity, and efficiency in IoT-cloud storage systems.

Figure 2.1: (a) representing data entry into system, (b) subsequent phases, like

chunking, hashing, and duplicate detection, (c) Deduplication Process.

DE duplicated illustrates the process of storing unique data together with potential

metadata or links. This diagram makes the procedure for decreasing redundant data

and increasing storage efficiency in the deduplication system more understandable.

A deduplication flowchart is typically used to analyse the identification and

elimination of duplicate data inside a system. After entering the data into the

flowchart, a comparison process is applied. In this step, the data is analyzed to look

for duplicate items. When a judgment point is reached in the case that duplicates are

found, redundant data is eliminated. After deduplication, the flowchart can advise

storing the cleaned data in a database or another kind of storage system. This process

maximizes storage capacity, improves data accuracy, and raises overall system

efficiency by making sure that only unique and non-redundant data is retained.

Through the visual representation of these stages, a deduplication flowchart offers a

clear and systematic overview of the data cleaning process, aiding in understanding

and execution for a range of applications, including databases and cloud storage [27].

The process known as data de-duplication, or just Dedup, lowers the cost associated

with storing duplicate data. Data De-duplication maximizes the amount of free space

on the volume by examining the data and looking for portions that are duplicated.

Duplicate sections of the dataset are only stored once and can be compacted to save

space if needed. Data de-duplication reduces redundancy while maintaining data

authenticity and integrity. Data de-duplication is a process that gets rid of duplicate

data and drastically lowers the amount of storage space needed. De-duplication can

be carried out as a background process to get rid of duplicates after data has been

Chapter Two Theoretical Background

28

recorded on disk, or it can be done as an inline procedure as data is written into the

storage system. Since de-duplication operations operate in a different efficiency

domain from the client read/write domain, their performances are minimal.

Regardless of the application that is open or the method used to access the data (NAS

or SAN), it operates in the background. When data moves between on-premises,

hybrid clouds, and/or public clouds, or is duplicated to a disaster recovery site or

backed up to a vault, de-duplication savings are maintained. Chunking is the process

of breaking up a stream of data into many segments. Although there is a reduction

in computing cost when the chunk size is large, the effect of deduplication might not

be noticeable right away. When the chunk size is very small, computation is

expensive, and deduplication has a discernible effect.

2.2.1 Methods of Data Deduplication

The data gathered through various sources and the emergence of the IoT has

significantly increased the volume of data from petabytes to yottabytes, therefore

necessitating the cloud computing paradigm in order to process and store data. The

duplicated sections of the dataset are stored once along with being subjected to

optional compression to free up even more space. It is also beneficial in ensuring

veracity along with maintaining data integrity. [43] There are various methods of

data deduplication such as inline deduplication, post processing duplication, source

deduplication, target deduplication and client-side deduplication. There are two

approaches that may be used to remove unnecessary deduplicate from material. [44]

1) Deduplication In-Line.

Due to the fact that it is processed inside a reinforcement framework, inline

deduplication simplifies the information. When information is maintained in contact

with reinforcement accumulating, it is possible to eliminate instances of duplication.

Although inline deduplication needs less stockpiling of reinforcements, it might still

Chapter Two Theoretical Background

29

result in bottlenecks. The capacity exhibit provider recommends that their inline data

deduplication solutions have their output twisted off in order to achieve high

throughput.

Inline deduplication is a widely prevalent method that comprises deduplication and

compression where data reduction takes place before the incoming data is written to

the stored media. Inline deduplication is essentially the removal of redundancies

from a given data along with being a software defined storage solution or a storage

controller that is in control of the places and the processes through which the data is

saved and secured. The Inline deduplication method takes account of the entirety of

data going through the tool and is scanned, deduplicated and compressed in real-

time. Additionally, inline processing is also found to reduce the raw disk capacity

that is needed in the system.

It takes place because the un-deduplicated and uncompressed dataset in its original

size is never written to the disk. Therefore, the write operations that are executed are

also comparatively lower thereby reducing the wear on the disks. However, it can

also be observed that in inline deduplication the process significantly slows down

the data backups that eventually is found to impede the entire process. This

eventually reflects the fact that the result will thereby be devoid of any redundant or

inefficient data. Inline deduplication is found to rely on the processes that exist

between the data origin servers and the data backup destinations.

2) De-duplication After Processing

Simultaneously, post-processing data duplication is the process where the data at

first is written to the storage media which is then followed by the analysis of

duplication along with identification of any scopes for compression opportunities.

The deduplication and compression is executed only after the data is securely stored

in the storage device. In addition to this, in the process of post-processing data

Chapter Two Theoretical Background

30

duplication the initial capacity that is required is somewhat related to the raw data

size. Simultaneously, the optimised data is then saved back to storage media. It is

done with relatively lesser space requirements in comparison to that of before data

reduction.

Post-processing dedupe is a 735 synchronous reinforcement operation that

eliminates repeated data after it has been maintained in contact with capacity. The

data that has been entered more than once is removed, and it is replaced with an

indication that is positioned toward the principal focus of the square. The post-

processing method provides customers with the flexibility to dedupe certain

remaining jobs at hand and the speed to quickly recoup the most recent

reinforcement without requiring water. The trade-off for this is a larger

reinforcement stockpile limit than would be required with inline deduplication [45].

Post-processing data duplication is identified as an asynchronous backup process

that is beneficial in the removal of redundant data after it is successfully written to

storage. This process provides the user with enough flexibility and independence

towards deduping specific workloads along with efficient recovery of the most

recent backup. The post-processing data duplication is found to utilise the latest

backup and is therefore found to take up more disk space in comparison to other

deduplication processes. However, the post-processing data duplication takes a

relatively lengthier processing time because of the fact that data is identified prior to

the removal of the duplicate data from the storage unit.

3) Source Deduplication

When data deduplication is applied at the source of data generation or transmission,

it is referred to as client-side deduplication. Data deduplication processes are carried

out on the client or source device prior to the data being transferred over the network

to the storage destination, like a cloud server or backup appliance. This method

Chapter Two Theoretical Background

31

entails locating duplicate data blocks or chunks within the data stream at the source

device and removing redundant copies before the data is transmitted to the storage

system. By removing duplicate data at the source, source deduplication reduces the

amount of data transferred over the network and stored on the destination storage

system, resulting in significant savings in bandwidth and storage capacity.

4) Target Deduplication

Target deduplication is a type of data deduplication where the data is processed at

the target device, like a storage array or backup appliance, or at the storage

destination. Target deduplication finds and removes redundant data after it has been

transferred and stored on the destination storage system, as opposed to source

deduplication, which does so at the source before transmission.

Target deduplication involves data deduplication operations carried out on the

storage device itself. Here, redundant data blocks are found and removed using

preset patterns or algorithms. With this method, businesses may reap the benefits of

data reduction and storage optimization without having to modify their client or

source devices.

2.2.2 Data Deduplication strategies

Primarily, there is the record level, the square level, and the byte-level method, and

each of them may be improved for increased storage capacity.

▪ File-level data deduplication strategy: This strategy functions at the file level

and not at the sub-file level or the block level. File-level data deduplication is

a technique used for data optimization. This helps in eliminating redundancy

at the file level. This is what helps this strategy significantly save storage

space and improves the efficiency of data storage. This strategy first identifies

the duplicate files and then retains only a single instance of each unique file.

The duplicates are replaced as references and pointers to the original file. The

Chapter Two Theoretical Background

32

duplicate files are identified across the whole storage system. The duplicate

files are identified regardless of their location or format.

This technique is particularly effective where the files are frequently

duplicated. It is also effective in an environment where many similar files are

stored. For example, it will be very effective to use a file-level data de-

duplication strategy in file servers or data repositories [46]. The major benefit

of file-level data de-duplication is that it helps in reducing storage space. In

addition to that, this technique also helps to reduce backup windows,

improving backup and restore performance. This involves only unique files,

which makes the backup of files faster and reduces the recovery times of the

files.

These benefits help to reduce the corruption of files as the number of files gets

reduced. This definitely enhances the entire data management system. The

two steps used in this technique include :

1. The system scans the storage environment, which includes analysing

the metadata and the duplicate content files. Metadata contains details

like names, sizes, creation dates, and more attributes of the file [47].

The Metadata helps to differentiate between two or more different files.

The analysis of the content involves an actual data examination within

the files.

2. The identification of the duplicate files is followed by keeping one

single copy of the file as the reference file and the other duplicate files

are saved as pointers or references to the primary file [48]. This gives

easier access to duplicate files with the help of pointers and clearly

saves storage space.

▪ Block-level data deduplication technology: This technique is different from

Chapter Two Theoretical Background

33

the file-level de-duplication technique as in this; the duplicate file is identified

at the granular level. These are called “data blocks”. The data from different

files are broken into blocks to identify duplicate data. The identified duplicate

data is then replaced with pointers or references to the single instance of the

block [49]. The three main benefits of this technique include saving storage

space, reducing backup windows, and enhancing data transfer speeds. The

data in this technique is stored in fixed or variable-sized blocks. The sizes of

these blocks range between a few kilobytes to several megabytes.

Each block identified in this technique is processed individually and the

unique hash value for each block is calculated. This hash value represents the

data within each block and hence serves as a fingerprint for accessing the data.

The significant steps in this data deduplication technique are:

1. The data from the files are broken into blocks after a thorough scanning

of the files.

2. The hash values are assigned to each block, which helps in easy access

to these data. This helps to find the duplicate data in these files.

3. The hash value brings forward the duplicate data and these are then

replaced with pointers or references to the single block file. This block

is called the “reference file”.

This technique helps in making the storage process efficient. Organisations can

reduce storage space by eliminating the identified duplicate files. Organisations

often use this method to store higher amounts of data in the same storage system.

This technique also helps to have an efficient backup and restore system [50]. This

happens because this technique only uses unique blocks and these are transferred

and stored as it is. This makes the backup time lesser and creates shorter backup

windows.

Chapter Two Theoretical Background

34

⮚ Block-Level Innovation

Modifications made on the inside of the file will result in the whole document having

to be stored. PPT and other documents may need to undergo minor adjustments to

their fundamental information. For instance, if a page has to be updated to display

the most recent report or the dates, this may need a complete restore of the archive.

The block level information de-duplication technology saves just one version of the

paper and the subsequent portion of the differences that have been made between

versions. The file-level innovation, which is often under a 5:1 compression ratio,

whereas the block-level storage innovation may pack the information limit of 20: 1

or even 50: 1

⮚ Evacuate File Level Innovation

File-level information de-duplication technology, the record is extremely little, and

the rehashing of the information by the designated authority takes practically no time

to calculate. Because of this, the method for expulsion has very little impact on the

execution of reinforcement. Due to the fact that the file is little and has a low

recurrence level, the report level handling load needed to evacuate the innovation is

also comparatively modest. A less impact on the amount of time required for

recovery. Remove the technical need to "reassemble" the information square by

using the square level essential file coordinating square and the information square

pointer. The record level innovation consists of a one-of-a-kind archive storage and

highlighting the document pointer, which significantly reduces the amount of time

required to rebuild.

⮚ Cloud Storage Mechanism

Every cloud has a certain amount of storage, so if start uploading duplicate

information, the storage will be lost, and dealing with data redundancy will become

a major issue. Researchers have been investigating numerous techniques to combat

Chapter Two Theoretical Background

35

this, and data deduplication is the best answer. A method called data deduplication

was developed to improve storage [77]. Different cloud service providers, including

Dropbox, Amazon S3 and Google Drive, now use this strategy. Data duplication is

prevented by making sure it is never uploaded to the cloud more than once.

A. As the amount of digital data grows, so does the need for greater storage space.

B. Traditional solutions don't have any built-in protection against duplicate data being

saved up.

C. Data De-duplication is critical for removing redundant data and lowering storage

costs.

The quantity of data generated is growing exponentially in quickly developing

digital age. The demand for more storage space has grown as more areas of life, from

social media interactions to business transactions, are becoming digitalized. This

article looks at how inadequate present storage capabilities are for keeping up with

the rate of expansion in digital data and the significance of finding a solution.

● A Partial Solution: The increased need for storage space has a partial solution

in the form of cloud storage. Cloud service providers can offer scalable storage

options to consumers and businesses by utilising the enormous capabilities of data

centres. This method, however, has its own set of drawbacks, such as worries about

data privacy, security lapses, and dependence on outside sources [9]. Additionally,

the cost of storing significant amounts of data on the cloud can rise significantly,

particularly for long-term retention.

● Explosive Growth of Digital Data: The internet's rising use, the widespread

use of smartphones, and the rise of connected gadgets have all contributed to the

digital revolution's data explosion. The amount of digital data is always growing

because of all online interactions, transactions, sensor readings, and media uploads.

Chapter Two Theoretical Background

36

● New Technologies for Data-Intensive Systems: The problem with storage is

made worse by the emergence of data-intensive technologies like artificial

intelligence (AI), machine learning (ML), and big data analytics. Massive datasets

are needed for these applications in order to build models and gain insightful

knowledge. Additionally, the growing use of virtual reality, augmented reality, and

high-definition multimedia content puts extra pressure on storage infrastructure by

necessitating higher capacity and quicker data retrieval.

The lack of storage capacity is becoming an urgent issue as the digital world

develops. Finding scalable and effective storage solutions is urgent given the

exponential growth of digital data and the rising demand for data-intensive

applications. While cloud storage provides a partial solution, research into next-

generation storage systems is necessary to make sure that the storage infrastructure

can sustain the ever-growing digital world [11]. It can fulfil the increasing need for

storage space and unleash every advantage of the digital age by making investments

in technology development and promoting innovation.

The problem of redundant information has grown significantly in importance in the

era of expanding digital data. Traditional storage solutions frequently do not have

built-in duplicate data management tools. The significance of data deduplication in

eliminating redundant data and lowering storage costs is highlighted in this article.

Duplicate data refers to information that is identical and spread across different

locations in a storage system. It may be caused by a number of things, including user

error, system backups, or data replication procedures [13]. Duplicate data not only

takes up valuable storage space, but it also drives up prices, slows down data

retrieval, and uses resources inefficiently.

Hard disc drives (HDDs) and solid-state drives (SSDs), two common types of

traditional storage, lack built-in techniques for locating and removing duplicate data.

Chapter Two Theoretical Background

37

Organisations can considerably reduce their storage needs by getting rid of duplicate

data. However, ensuring that only one copy of each piece of information is stored,

data deduplication increases data efficiency. Enhancing data integrity means

reducing duplicate data [14]. Duplicate data can cause conflicts and inconsistencies,

jeopardising the accuracy and dependability of data that is kept. Disaster recovery

procedures might be hampered by duplicate data since it increases backup and

restore times. In today's data-driven world, adopting data de-duplication is essential

for effectively managing and maximising the value of digital data.

2.2.3 Process of Data

A method known as "data deduplication" may be used to get rid of multiple copies

of data that is repeated. You may also know it by the name Single Instance Storage.

There are two distinct methods of deduplication, which are referred to respectively

as deduplication at the file level and at the block level [50]. While deduplication at

the file level takes into consideration the whole file, deduplication at the block level

applies deduplication to data blocks using hashing methods.

Figure 2.2: Deduplication Flowchart [51]

The figure 2.2 deduplication flowchart effectively displayed the process of data

optimization through applying deduplication procedures. The procedure starts with

the registration process from the end of users. Users provide various primary and

Chapter Two Theoretical Background

38

well-organised information about themselves or their organisations in order to

register themselves into the cloud storage system. The successful registration takes

them to the login page of the cloud storage system. The users are required to provide

their login id and password in order to access their data stored in the database. The

login id and password is used to ensure the safety and privacy of all the stored data.

 However, if the registration process of the user fails then the user is asked to re

authenticate their credentials and basic information. The successful login using the

correct credentials take the users to the upload and download section. Downloads of

the stored files require authentication from the system. Users can download the

asked files if they are authenticated to do so. However, if the user wants to upload a

file in the cloud storage then the duplication of the file will be checked. The access

is denied if any kind of duplication is found on the provided file. Cloud storage

systems grant the permission to upload any new file if no duplication is found on the

provided file.

2.3 Purpose of Data Deduplication

 It is crucial to eliminate duplicate data within a dataset for efficient management

of data and save storage space. Therefore, it can be said that data De-duplication

helps enhance the integrity of the data while improving the system's performance as

well. In order to get an in-depth picture of the significance of data De-duplication,

here are some key points explained in details:

1) Optimization of System Storage:

After reviewing other studies on this subject, it has been understood that not only

duplicate data takes up unnecessary storage space, but also hampers the overall

system performance. Data De-duplication identifies duplicate data and files in

the device, and removes them to make space for other important data. Examples

of data De-duplication in real world scenarios can be found in backup systems,

Chapter Two Theoretical Background

39

archives, and cloud storage. These services use data De-duplication to prevent

data redundancy while improving the data retention capabilities of itself.

2) Bandwidth Conservation:

Bandwidth conservation becomes a key factor when data is to be transferred

across domestic networks. It also becomes crucial while data backup to different

locations (offsite). The Data Deduplication comes in use in this case selectively

remove repetitive data prior to the transfer. This is done so that the data that is to

be transferred is reduced in size, and only takes up space that is crucial for the

core dataset. However, this also helps in faster transfer of the data, lower

bandwidth needed for the transfer of data, and lesser network traffic.

3) Data Governance Regulations and compliance of them

Government has placed several strict regulatory compliance measures on

companies and industries regarding data handling. In such cases, data

deduplication comes into play by helping companies meet most of these

regulations. Additionally, it also helps in "data tracking" efficiently, and helps to

follow the data governance practices as prescribed.

4) Data integrity and Data loss:

Data De-duplication can improve the integrity of the data and confirm only one

version of each data to exist in the data set It is important to avoid any sort of

duplication of data as they can cause errors and inconsistencies. If in any

circumstances, there is data loss, data de-duplication makes the data recovery

process much simple. It also ensures that there are less risks of data corruption

and faster process of system restore.

The expenditures that are connected with duplicated data may be reduced by storage

managers with the assistance of data de-duplication. When dealing with large

Chapter Two Theoretical Background

40

datasets, it is common to find a significant amount of duplication, which drives up

the cost of storage. As an example:

● It's possible that different users' file sharing includes several copies of the

same or similar files.

● Virtualization guests may often be almost exactly the same from one VM to

the next.

● There may be some variation from one day to the next in the backup

snapshots.

The dataset or the workload on the volume will determine the amount of space that

can be saved thanks to data de-duplication. High-duplication datasets have the

potential to reach optimization rates of up to 95%, which would result in a 20-fold

decrease in the amount of storage space required. The following table provides a

summary of typical cost reductions that may be achieved by de-duplication of

different categories of material:

Table 2.1: Data De-duplication Scenario & Typical space savings

Scenario Content Typical space

savings

User documents Office documents, photos, music,

videos, etc.

30-50%

Deployment

shares

Software binaries, cab files,

symbols, etc.

70-80%

Virtualization

libraries

ISOs, virtual hard disk files, etc. 80-95%

General file share All the above 50-60%

Chapter Two Theoretical Background

41

2.4 Chunking Algorithm

Chunking is referred to as the process of splitting file into smaller units where

efficient chunking is one of the key elements that provides an estimation of the

deduplication performance. Chunking is important in certain applications such as

data compression, data synchronisation, as well as data duplication as it helps in

determining the duplicate detection performance of the system. Subsequently, in the

perspective of the cloud storage ecosystem and about data duplication chunking is

of two types that are fixed size and variable size. The chunking process is beneficial

in breaking the data input stream into smaller pieces or chunks where the chunking

method is the first stage of the deduplication system. A chunk is the largest physical

disc unit dedicated to storing database server data. Chunks give managers a much

larger unit to work with when allocating disc space. An individual chunk can be up

to 4 TB in size. The maximum number of chunks allowed is 32,766. If you upgraded

from a version prior to version 10.00, you must perform the on-mode BC2 command

to enable the maximum chunk size and maximum number permissible otherwise, the

maximum chunk size is 2 GB.

2.4.1 Storage areas made up of chunks

Dbspaces, or database spaces, act as logical storage containers in database systems,

consisting of chunks. Chunking divides the storage into manageable parts,

optimizing storage utilization and enabling flexible data management. In case of

corruption, only the affected chunk is impacted, minimizing the effect on other data.

Blobspaces are designated for large binary objects like images and videos. Chunking

breaks down these objects, enhancing data integrity and recovery. Managing large

binary data becomes more efficient as chunking ensures easier storage and retrieval

Segregated Buffer spaces store diverse data types within a single database,

categorized based on different criteria. Chunking allocates fixed-sized units,

Chapter Two Theoretical Background

42

facilitating easy access and parallel processing. It enables efficient storage utilization

and enhances database performance. Temporary spaces handle temporary data,

aiding query processing and sorting. Chunks store specific parts of temporary data,

allowing seamless management and deletion when data is no longer needed. These

specialized buffer spaces store only temporary data, like intermediate results.

Chunking optimizes storage by predetermining chunk configurations.

Figure 2.3: Chunking Algorithm [66]

Fixed-size and variable-size hashing algorithms play crucial roles in data

deduplication, a process that identifies and eliminates duplicate copies of data to

optimize storage efficiency. Let's explore how each type impacts the efficiency of

data deduplication:

Fixed-size Hashing Algorithms:

Example: SHA-256, MD5

Characteristics: Fixed-size hashing algorithms generate a constant-length hash value

regardless of the input data size. For instance, SHA-256 always produces a 256-bit

hash value.

Impact on Deduplication Efficiency: Fixed-size hashes simplify the deduplication

process by providing a consistent reference point for comparison. Identical chunks

of data will always produce the same hash value, enabling efficient identification of

duplicates. However, fixed-size hashing may lead to hash collisions, where different

Chapter Two Theoretical Background

43

input data produce the same hash value, potentially resulting in false positives during

deduplication.

Variable-size Hashing Algorithms:

Example: Rabin fingerprinting, Content Defined Chunking (CDC)

Characteristics: Variable-size hashing algorithms produce hash values of different

lengths based on the input data. These algorithms typically use sliding window

techniques or content-defined chunking to break data into variable-sized chunks and

compute hashes for each chunk.

Impact on Deduplication Efficiency: Variable-size hashing can enhance

deduplication efficiency by adaptively segmenting data into chunks of varying

lengths. This allows the algorithm to identify duplicate segments even if they are

located at different offsets within files. However, variable-size hashing algorithms

may require more computational resources and introduce complexity in managing

variable-length hash values.

In terms of efficiency, both types of hashing algorithms have their strengths and

weaknesses in the context of data deduplication:

Fixed-size Hashing:

Pros: Simplicity in implementation and comparison. Ideal for scenarios where hash

collisions are infrequent.

Cons: Susceptible to false positives due to hash collisions, potentially leading to

duplicate elimination errors.

Variable-size Hashing:

Pros: Adaptability to varying data patterns and improved duplicate detection across

different file offsets.

Cons: Increased computational overhead due to variable-length hashes and

complexity in chunking algorithms

Chapter Two Theoretical Background

44

Data deduplication is an emerging technology that involves the introduction of

reduction of storage use and is an important way of handling data replication in the

cloud storage mechanism. It can be mentioned here that data deduplication involves

three basic components that are chunking, hashing, and comparing hashes in order

to detect redundancy. A chunking algorithm is considered the first step in achieving

efficient data duplication ratio and throughput, certain unique hash identifiers are

implemented to draw a comparison between the chunks between the current to that

of the previously stored ones.

2.5 Hash Value (HV)

A hash value is identified as a numeric value of a definite length that uniquely

defines data. The hash value generally represents a large range of data in the form

of much smaller numerical values in order to make it eligible to be used with digital

signatures. The utility of hash value is significantly higher than in comparison to the

original larger value and is important in verifying the integrity of the data that has

been transmitted through non secured channels. Generally, data is hashed at a

definite time along with ensuring its value is protected at the same time. Different

hash function values are allocated to various slices or chunks of data and after

comparing a hash value (HV) with all other slices, the updated hash values are

returned. This procedure is reiterated until the value convergence of assignment to a

state of no change. A numeric number of a predetermined length that may be used

to uniquely identify data is referred to as a hash value. Hash values are employed in

digital signatures because they can represent enormous quantities of data with much

smaller numeric values. This makes them useful [40].

Hashes are generally identified as the output of a hashing algorithm where the

primary objective of these algorithms is to produce a unique, fixed-length string –

the hash value, for a given piece of information or data. The hashing algorithm

Chapter Two Theoretical Background

45

prevents the reconstruction of a file’s content and therefore, validates and evaluates

the content of two different files along with maintaining privacy and without

acquiring any information about the contents. Hash values are significant to security

searches and are important in evaluating the queries related to a particular dataset

over an existing network, it also helps in the early identification of threats.

A hash value (HV) usually requisites a particular number of bits, and when

subsequent chunks of data search for and locate chunks with the same hash value;

the chunks are viewed as duplicate data and aren’t kept in the data de-duplication

(DD) procedure. If the hash value (HV) is unique and not existing among previously

recorded values, the hash value is saved, and the matching data chunk is examined

and saved in databases (DB).

Chapter Two Theoretical Background

46

Figure 2.4: Hash value

Cloud storage has evolved as one of the leading options to store huge amounts of

data; however, the hash value is also the representation of a longer document from

which it was computed. The contents of a file is processed through the

implementation of a cryptographic algorithm where a unique numerical value is

generated and identified as a hash value. Hash values are important as they can be

used to assess data of various sizes into a limited fixed size value. Hash values are

deterministic along with being efficient in adapting to any change in the input

thereby incorporating it in the output.

2.6 Dynamic Prime Chunking

The process flow of the chunking method, in addition to its primary and essential

qualities. Dynamic Prime Chunking is a sophisticated data management technique

designed to optimize storage efficiency and enhance data retrieval processes. Unlike

traditional chunking methods, DPC dynamically adjusts the size of data chunks

based on the content being processed. This adaptability ensures that chunks are of

optimal size, preventing both underutilization and excessive fragmentation of

storage space. By intelligently resizing chunks according to the data's nature, DPC

improves storage utilization, accelerates data access, and minimizes storage wastage.

2.6.1 Dynamic Prime Chunking Design

The Dynamic Prime Chunking does not have a fixed size of sub problems, or chunks,

and reduces computational cost. They are subjected to dynamic changes that depend

on various heuristics. In simpler words, those algorithms can modify the size of the

chunks depending on various factors, including the input number's properties and

computational resources available onsite.

Chapter Two Theoretical Background

47

Figure 2.5: Fixed size chunking of data packet

Dynamic prime chunking algorithm aims to maintain a balance between memory

usage of the data, and the "computational efficiency" [52]. Breaking the problematic

bigger chunk into smaller chunks will dynamically reduce their size, making the

processing much more efficient, and also reduce memory space.

Step 1: Data Input Stream

Strat from I, I is the initial byte position of the data input string.

Step 2: Calculate the dynamic window size dw based on prime number.

Step 3: Finding the maximum byte position.

M is threshold value if, Chunk breakpoint determine the following two condition

1. The interval [I, N] is empty, or the value of M is greater than the values of all

bytes in the interval.

2. The value of M is not less than the values of all bytes in the interval [O, C]

Step 4: Declaring chunk boundary.

Return C as breakpoint I' is first byte of the remaining input string.

The version of AE that uses the dynamic prime chunking technique has been made

better. DPC is primarily applicable to two crucial qualities, namely position and

value. As can be seen in Figure 2.5, the DPC design process consists of four distinct

Chapter Two Theoretical Background

48

components. First, start by reading the data input stream coming from the source.

Begin at point I, where I is the beginning byte location of the data input stream. Start

from there. Following this, we go on to step 2 of the process, where we use steTp 3

to compute the size of the dynamic window (DW) using prime integers. DPC makes

use of two windows: one with a configurable size, and another with a dynamic

changing size. The algorithm decides whether the lowest or maximum value of the

input stream is the maximum value or the maximum value to use as the threshold

(M). The procedure will decide what the threshold value is, and it will always be the

highest or most extreme number. The third phase consists of determining the

maximum value for a byte and locating the border of a chunk based on the two

requirements that are listed below:

(1) To ensure that the interval [I, N] is also empty, or that the highest threshold

value of M is greater in significance than any of the byte values included

inside [I, N].

(2) In the dynamic window with a changeable size, the extreme value M must be

greater than the value of every byte that falls between the coordinates [O, C].

In order to ensure that the highest byte point is represented as the maximum local

value, it is necessary to assess whether or not the first byte satisfies the requirements

described above, which are related with a threshold value. On the other hand, the

maximum byte location has been established, and DPC has declared the byte that is

most to the right to be the chunk breakpoint for the right-side window [52]. The

algorithm will return the breakpoint location C once the chunk boundaries have been

specified in step four once they have been declared. After that, the sequence that

begins at the first byte location continues with the letter I. Repeat the methods from

the previous section until you locate the very last boundary of a chunk in the

incoming data stream.

Chapter Two Theoretical Background

49

2.6.2 Workflow of DPC

Figure 2.6: The workflow of DPC algorithm

In the example shown in Figure 2.6, the first byte position, which is indicated by the

letter A1, continues to advance in the correct direction until it reaches the end of the

byte position B. The threshold value M1 is used to partition the whole data stream

into several parts. The location of the leftmost byte, which comes before the

threshold, must thus be a window of variable size. M1 refers to the gap that exists

between each successive byte, beginning with A1 and ending with X1. As the right

motion, the byte position is moved forward once again, this time from Y1 to B1. As

stated in Chunk 1, DPC is also a dynamic window with an adjustable width and

height. The precise procedure is carried out from chunk 1 all the way through chunk

N. The reason why there is a dynamic window is because the point at which the

chunks split is constantly changing in size. AE, on the other hand, just the left side

has a varied size; the right section remains the same throughout. As a result, the

effects will be felt greater in AE. In order to circumvent this problem, the DPC

technique that we've presented makes use of a variable window size. This helps to

get rid of the lengthy chunk sequence and boosts the deduplication throughput.

Chapter Two Theoretical Background

50

2.7 Content Defined Chunking (CDC) Algorithms

The term "content-defined chunking" (CDC) refers to a technique for dividing files

into chunks of varying lengths, with the cut points being determined by the inherent

characteristics of the files themselves. chunks with variable length are less prone to

byte shifting than chunks with a set length. Content-Defined Chunking, or CDC, has

been a key component of data deduplication systems for the better part of the last 15

years due to its strong redundancy detection ability. However, existing CDC-based

methods which results in a significant increase in CPU overhead just because, the

chunk cut points are thought by calculating and also evaluating the rolling hashes of

the data stream byte by byte.

A single file is divided into numerous smaller files, commonly referred to as pieces,

using the chunking process. Chunking affects the system's duplicate detection

performance, which makes it important in some applications. Data synchronization,

data deduplication, and remote data compression are a few instances of these

applications. The process of splitting files into chunks of different lengths, where the

cut points are established by the properties of the individual files, is known as

"content-defined chunking" (CDC). Chunks having a variable length are less prone

to byte shifting than chunks with a set length [53]. Consequently, this increases the

chance of finding duplicate chunks within a file as well as between files. However,

CDC systems require additional computation to detect the cut locations, which could

be computationally expensive for specific applications.

Byte shifting in fixed-length algorithms is addressed by a content-defined variable-

length chunking technique [52]. This approach builds chunks based on the window

data's Rabin fingerprint after reading files as a data stream. To address the issue of

finding the cut-off point being challenging, it has been proposed that the Rabin

technique employ two divisors rather than just one. One of the two divisors is easy

Chapter Two Theoretical Background

51

to use, while the other is entirely different. The most difficult divisor needs to be

used right from the start when trying to locate an appropriate stopping point. If the

data cannot be fulfilled within a lengthy data period, then it will be replaced by the

easier one in order to prevent huge chunks of data wherever possible. In addition to

this, the Rabin fingerprint suffers from an issue known as size variation of pieces. A

technique known as LMC, or Local Maximum Chunking, has been suggested as a

solution to this problem . The method comes to the conclusion that a cut-off point

should be established if the greatest value of a window's data is located in the centre

of the window. This allows the programme to avoid the time-consuming process of

generating the Rabin fingerprint. At the same time, the size of the chunks may be

restricted because the window size can be set, and the distribution of the chunk size

is reasonably constant. This is because the window size can be set. AE [48] and

RAM [35] are two techniques that have been presented in order to expedite the

process of validating the window data. Increasing the speed of chunking may be

accomplished by modifying the validation technique of window data; this process

will be discussed in more detail later on. In addition, the concept of parallel

computing is used to the algorithms that are used for data chunking in order to make

the process move more quickly.

2.8 Types of Chunking Algorithm

2.8.1 Rabin chunking Algorithm

 The Rabin chunking algorithm is also popularly known as "Rabin Fingerprinting

Algorithm" which was developed back in 1981, by Michael O. Rabin. This system

is very helpful when it comes down to breaking the data into smaller, and fixed size

chunks. This breakdown of the data depends on their data content. Therefore, it is

clearly suggested that it is a technique used in de-duplicating data.

Chapter Two Theoretical Background

52

This algorithm apparently creates a "rolling hash function". This function then

proceeds to calculate each of the data block's hash value, which is most popularly

known as a fingerprint of the data as well [54]. This fingerprint plays a crucial role

in identifying duplicate data chunks on the data, which are similar to one another.

Therefore, it is understood that any small change made in the data itself can result in

different hash values.

Sliding window approach is used in this type of algorithm to perform chunking. An

initial data window starts the process, and calculates that window's hash value at the

same time After the calculation is done, the algorithm shifts the window position by

one byte, only to calculate the hash value for the new position of the window. The

goal of this is for the hash value to satisfy certain criteria.

The Rabin Fingerprinting Algorithm is capable of identifying duplicate data chunks

within a larger dataset in a more efficient way. [56] This comes in use in the case of

backing up specific chunks of data to save space in the storage device. The Rabin

chunking algorithm can compare the hash values in order to recognise the duplicate

data chunks even if data blocks are somewhat dissimilar.

However, one of the biggest disadvantages of this algorithm is that it can give false

results [55]. For instance, it might show the result as false positive, which can happen

when coincidently, two completely different data blocks produce the same hash

value, therefore they can be flagged as duplicate data. Similarly, false negative

results occur when unfortunately, two of the same blocks of data show different hash

values.

2.8.2 LMC Chunking Algorithm

 The LMC, or Lesk's Measure of Cohesion Chunking Algorithm was Introduced

in 1986 by Michael Lesk. It is essentially a language processing technique, which

can detect meaningful chunks from a text. This technique calculates the Cohesion

Chapter Two Theoretical Background

53

scores of every word present in a text . This calculation is primarily done by

examining the overlap of the context of one word to its immediate next word. These

contexts are a group of words in a window, which has a fixed size around the main

word.

The use of this algorithm is mainly found in extracting information or parts of speech

tagging, etc. The identification of valuable chunks and extracting them from a text

allows in-depth understanding of the chunk's content. Thus, the LCM Algorithm can

assess the relationship shared between words by analysing their context, which

results in accuracy in identifying chunks.

2.8.3 Asymmetric Extremum (AE) Chunking algorithm

This algorithm looks for phrases, which appear to be important. This decision is

based on external factors such as the high level of information of the word, in

comparison to its neighbours. AE chunking algorithm reduces traffic redundancy to

be more efficient. After Tokenization, the features of each word, such as syntactic

patterns and parts of speech tags are computed.

The algorithm then proceeds to group words with best external features to form

something meaningful. Therefore, the AE chunking algorithm group’s words that

have the appearance of being informative to make a meaningful phrase, and this is

in use while extracting keywords from a text or retrieving information.

2.8.4 RAM Chunking Algorithm

"RAM or Rapid Asymmetric Maximum Chunking Algorithm” is a helpful approach

for the identification and segmentation of handwritten text in a phrase [56]. The

RAM chunking algorithm was developed so that the accuracy of the segmenting of

the handwritten characters increases [54]. In order to be able to achieve this goal, the

RAM chunking algorithm uses a group of image processing systems, known as

"threshold-based image processing" It helps to overcome challenges posed by the

Chapter Two Theoretical Background

54

overlapping strokes of the character, their irregular sizes, etc. The use of

asymmetrical chunking (smaller chunk) is Done by detecting the physical features

such as strokes and slants.

2.9 Secure Hash Algorithm

Secure Hash Algorithm (SHA) are a kind of cryptographic function that is used to

keep data secure. It transforms data using a hash function, which is a method

composed of bitwise operations, modular additions, and compression functions. The

hash function then returns a fixed-length string that has no resemblance to the

original. These methods are meant to be one-way functions, which means that once

they've been translated into their corresponding hash values, it's almost hard to

reverse the process. SHA-1, SHA-2, and SHA-3 are three algorithms of interest, each

of which was built with ever better encryption in response to hacker attempts.

Because of publicly publicised weaknesses, SHA-0, for example, is now outdated.

[56]

 SHA is often used to encrypt passwords since the server just has to maintain

track of a single user's hash value rather than the actual password. If an attacker

steals the database, they will only obtain the hashed functions and not the real

passwords, therefore if they enter the hashed value as a password, the hash function

will turn it into another string and prohibit access. Furthermore, SHAs display the

avalanche effect, in which changing a few characters in an encrypted string generates

a large change in output; or, conversely, vastly dissimilar sequences give comparable

hash values. As a result of this consequence, hash values do not provide any

information about the input text, such as its original length. Furthermore, SHAs are

used to identify data tampering by attackers; for example, if a text file is slightly

altered and hardly apparent, the modified file's hash value will be different from the

original file's hash value, and the tampering will be rather obvious.

Chapter Two Theoretical Background

55

There are several advantages and disadvantages of using Secure Hash Algorithm-1.

The primary advantage of using SHA-1 algorithm is it reduces the risks of brute

force attack by the hackers. It is useful for storing the passwords, as it is a very slow

process. It is also used to compare codes or files in order to identify the

“unintentional only corruptions”. It also has the capability to replace the SHA-2

when the matter of interoperability issue is noticed with the legacy codes. However,

it also suffers from various drawbacks including it is less secure as compared to other

algorithms. The collision is extremely easy to find in the SHA-1. The length of the

key in the SHA-1 is too short to resist the potential attacks. It is not suitable for uses

other than storing the passwords, as it is slow in nature.

Figure 2.7: Hash function

2.9.1 SHA – 1

 It is a 160-bit or 20-byte long hash-based function-based encryption technique

that is used to mimic the MD5 algorithm, which has been around for a while. The

NSA, or National Security Agency, conceived and developed the specific algorithm,

which was intended to be part of the crucial component- Digital Signature Algorithm

(DSA). Weaknesses in cryptographic methods were discovered in SHA-1; the

encryption standard was eventually discontinued and was hardly used.

Chapter Two Theoretical Background

56

SHA-1 generates a 160-bit hash value or message digests from the inputted data

(data that needs encryption), which is similar to the MD5 hash value. To encrypt and

protect a data item, it performs 80 rounds of cryptographic procedures. SHA-1 is

used in a number of protocols, including:

● Transport Layer Security (TLS)

● Secure Sockets Layer (SSL)

● Pretty Good Privacy (PGP)

● Secure Shell (SSH)

● Secure/Multipurpose Internet Mail Extensions (S/MIME)

● Internet Protocol Security (IPSec)

SHA-1 is widely employed in cryptography applications and contexts where data

integrity is critical. It is also used to index hash functions, as well as to detect data

corruption and checksum issues.

The SHA-1 or the “Secure Hash Algorithm 1” is considered the cryptographic

algorithm that includes the input and produces a 160-bit hash value. This hash value

is called the “message digest” which usually is rendered as a kind of hexa-decimal

number that is 40 digits longer. It is also considered to be in the “US Federal

Information Processing Standard'' and was said to be designed by the “United States

National Security Agency” [57]. The SHA-1 is presently considered to be insecure

since the year 2005. The giant technical browsers which include Google, Microsoft,

Mozilla and Apple have prevented accepting SHA-1 SSL certificates by the year

2017. The requirements to calculate the graphical value is included in Java where

the “MessageDigest class” is utilised under the package for “java.security”.

This class offers various cryptographic hash functions, including MD2, MD5,

SHA1, SHA224, SHA256, SHA384, and SHA512, which can be utilized to compute

the hash value of a given text. These algorithms can be initialized using the static

Chapter Two Theoretical Background

57

method "getInstance()". Once an algorithm is selected, the message's digest value is

calculated, and the results are returned as a byte array. To convert this byte array

into a readable format, the class utilizes "BigInteger". This conversion enables the

representation of the signal, which is then further converted into hexadecimal format

to obtain the expected result from the message digest.

These algorithms could be used in several forms such as:

1) Cryptography: The primary application of SHA-1 is to provide protection to the

communication from being interrupted by parties from outside. It generates

singular, irreversible and fixed size values. The data integrity can also be

confirmed through the comparison of this hash value with the original hash value

[57]. It also makes it easy in confirming that the data that is used is not tampered

or changed with the manner during the transmission of the data.

2) Digital Forensics: The hash value of a file that includes the digital evidence can

be manufactured making use of the SHA-1 algorithm in the digital forensics.

This also helps in ensuring that the evidence has not been changed during the

process of investigation using the hash value as a type of proof [58]. It also

proves that the file is not altered if the hash value for the original file and the file

of evidence matches.

2.9.2 SHA-512

 There are multiple applications of hash functions in the digital environment.

The mechanism applies to internet security, block chains and others. The hashing

algorithm constitutes a one-way program. The primary advantage of such a type of

algorithm is it cannot be restructured and decoded. Therefore, if any third party gets

access to the server, the entire data remains unreadable. The Hashing algorithm holds

the following properties in brief.

a. Mathematical - It maintains strict rules to design the algorithm.

Chapter Two Theoretical Background

58

b. Uniform - All hashing programs are uniform in nature. Whatever be the length

of the data it produces a fixed length of output.

c. One way - Once it is created, it will be nearly impossible to decode it.

Therefore, it is secure for programmers as well as users.

d. Consistent - A hashing program only one process that is compressing the

given data.

2.10 Software Requirements

When designing and developing software, it is best practice to first thoroughly

understand the product's intended use. Here is a rundown of everything you'll need

to meet BenchCloud's functional specifications:

● Authentication and authorization for cloud services.

Consumer identification is confirmed through confirmation, and their permissions

and privileges are established through authorisation. Despite both of these phrases

have a similar sound; they serve different but just as important functions in

protecting systems and information [68]. It is essential to comprehend the

differences. They establish a system's reliability when taken together.

● Support various cloud storage services and product vendors.

A “CSP “ is a third-party firm that offers expandable hardware and software, such

as cloud-based processing, storage, structure, and programming services, that

organisations may use on request across an internet connection [69]. Data is sent

over a communication link, usually through the web, and kept in distant data centres

where it is up-to-date, controlled, and eventually made accessible to subscribers as

part of a cloud storage structure.

● Support various file operations, such as sharing, downloading, and

uploading.

Chapter Two Theoretical Background

59

Installing a “File Transfer Protocol (FTP)” client is the most popular approach for

transmitting content to the website. Files may be sent coming from a single device

(individual system) to a different one (webserver) via “FTP (File Transfer

Protocol)” [61]. Anyone is able to transfer (upload, download) files from a single

system to a different machine using FTP software that resembles an archives editor.

● Support a variety of file generators to produce files with various patterns.

MPS (Mathematical Programming System) manages an index of file formats, for

every that connects an alphabetical facility using any number of naming designs.

These kinds of documents are used for expressing linguistic-specific capabilities

(such as “syntax annotation” and “code estimation”) in files embodying different

dialects and techniques [62]. Every aspect of applicable naming sequence is included

in the directory of file formats by default, yet it may add fresh file varieties for

language-specific folders and modify the names of the file sequences that go with

current file formats.

● Assistance with multithreaded operations

A program or computer’s “operating system (OS)” that supports numerous users

simultaneously despite necessitating numerous copies of the software to execute on

a device is known as multithreading. Several inquiries travelling an identical person

can be handled via multithreading as well. Most operating systems offer combined

“kernel-level threads” and threads created by users [69]. Solaris may be one of these

instances. Different threads operate concurrently in the identical platform in this

particular approach.

● Compile benchmarking results into statistics.

Through comparing a business's accomplishments to that of other people, and

comparable businesses, anyone may determine whether, there is an achievement

discrepancy, which can be filled by enhancing its own efficiency. Observing other

Chapter Two Theoretical Background

60

businesses may show how long it is needed to boost an organization's productivity

and establish a stronger position in the sector. The company may seek to increase

productivity exponentially by discovering points at which it wishes to make

improvements and measuring its present standing compared to rivals [61]. Through

applying benchmarking in such a way, organisations have been able to surpass their

rivals and raise the standard of excellence.

● Automatically record and preserve benchmarking results.

The “Symanto Insights Platform” analyses every feedback and summary's wording

to determine if that writer is endorsing the business disparaging the business, or

using a tone, which is neutral. A “Net Promoter Score (NPS)” is calculated by

subtracting the opponents from the marketers. An excellent NPS is a sign of devoted

and satisfied consumers [62]. The “Symanto Insights Platform” connects to popular

online ratings and social networking sites like Amazon, Trustpilot, and Google

Reviews to make it simple to quickly collect and evaluate countless language inputs.

● Record network packets while benchmarking is being done.

The speed of transmitting data connecting two computers installing “Performance

Test” needs to be tested using the “PassMark Advanced Network Test”, which

happens to be a component of “Performance Test”. The storage device will be

among the devices, which will remain idle while it anticipates an internet link [70].

Any TCP/IP connectivity option is compatible with the internet sample evaluation

including Ethernet, wireless networking (WiFi), local area networks (LAN), wide

area networks (WAN), cable modems, dial-up modems, and ADSL. Exceptionally

fast gigabyte Ethernet connectivity may be benchmarked according to the

application's optimisation for minimal CPU time usage [70].

● Able to test cloud storage systems' native clients and web APIs.

Chapter Two Theoretical Background

61

An API, or application-programming interface, for cloud computing, interfaces a

natively installed software to an online-based database so that users can transfer and

receive content as well as manipulate the data held there. Similar to disk-based

storage, a cloud-based memory framework is essentially another prospective

medium for the programme [63]. A cloud API is unique based on the data storage

provider it is intended to support. An internet-based archiving provider could. For

instance, provide an API that can generate, gather, and destroy items on that system

in addition to carrying out similar item-related operations [70]. A file preservation

API supports actions like sending and receiving items and distributing documents

with many individuals at the component and category layers.

2.11. MISD Dataset

 The Multipath IoT Sensor Data (MISD) Dataset is a comprehensive collection

of sensor readings generated by a network of IoT devices deployed in various

environments. This dataset is specifically designed for evaluating and testing

multipath routing algorithms such as MDPC in wireless sensor networks and IoT

systems. The key features of the MISD Dataset are:

• Contains sensor data from diverse IoT devices including temperature sensors,

humidity sensors, motion detectors, and more.

• Captures data at regular intervals to simulate real-time IoT data streams.

• Includes metadata such as device IDs, timestamps, and environmental

context for each sensor reading.

• Provides ground truth labels for certain events or anomalies to facilitate

supervised learning tasks.

• Covers a range of scenarios including smart homes, industrial IoT, healthcare

monitoring, and environmental sensing.

Chapter Two Theoretical Background

62

Chapter Three

Proposed Mechanism

Chapter Three Proposed Mechanism

61

Chapter 3

Proposed Mechanism

1.1 Introduction

 This chapter presents the research mechanism for the proposed model for cloud

IoT environment. The efficient algorithm for constrained IoT devices was covered in

detail in this chapter. In this chapter, the proposed work is on two levels. The first is

an algorithm to avoid congestion in the network to reduce the repeated transmission

of packets. Second, data duplication was addressed and the security aspect was taken

into consideration. Figure (3.1) shows the proposed mechanism in cloud storage for

IoT environment.

Figure 3.1: Diagram of the Proposed Mechanism

Chapter Three Proposed Mechanism

62

Figure (3.2) shows the basic steps followed to conduct the proposed work.

Figure 3.2: Work Stages

3.1. DPC Algorithm

 The DPC algorithm combines techniques to reduce the computational

complexity of solving optimization problems with large state spaces. It involves the

following steps:

Chapter Three Proposed Mechanism

63

1) Clustering: Initially, the state space is divided into clusters based on certain

similarity measures. Clustering helps in grouping similar states together,

reducing the overall size of the state space. Like DPC, the state space is initially

partitioned into clusters using clustering techniques. Clustering helps in reducing

the complexity of the problem by focusing on smaller, manageable subsets of

the state space.

2) Dynamic Programming within Clusters: Dynamic programming methods are

applied just to find the optimal solution, and this happens within each cluster.

By solving minimum or smaller subproblems within clusters, as comparable to

solving the entire problem space the computational complexity is reduced or

decreased.

3) Inter-Cluster Communication: Coherence and uniformity in the final solution

are ensured by facilitating flow of data or communication amongst clusters.

Exchange of border data, best practices, and other pertinent information can all

be a part of inter cluster communication.

3.2. MDPC Algorithm

 Like DPC, communication among clusters is very important to ensure coherence

and continuity in the final and last solution. Sharing information about boundary

conditions, optimal policies and other important data is involved by inter-cluster

communication. This process not only involves a detailed comparison and contrast

of existing cloud storage systems but also, examining their various features and

performances. The main reason and achievement of this methodology is the

development and application of a specialized benchmarking tool which is designed

for assessing the efficiency, flexibility, and user-friendliness of cloud storage

systems. In the beginning stage, the research and process involves collecting of data

Chapter Three Proposed Mechanism

64

about various cloud storage solutions which are currently available for. Examining

the infrastructure of these systems, understanding their data organization, storage

capacities, scalability, and the nature or behavior of their virtualized storage

environments this step is used. In identifying the key characteristics that impact the

performance and cost-effectiveness of these services this examination helps.

However, the research and study moves to a critical comparison of these cloud

storage solutions. This comparison is not merely theoretical; because it involves

practical analysis based on specific parameters such as storage capacity, scalability,

ease of access, and cost-efficiency. The main point to discuss and focus on is how

these systems try to manage and maintain data and information, also to know about

their ability to scale up or down based on user requirements, and the overall about

user experience in terms of managing and accessing stored data.

 The vital stage of the methodology is the creation of a benchmarking Concept.

However, this Concept of methodology is designed to test operational cloud storage

systems, and then evaluating them on various performance metrics. In assessing the

efficacy of the cloud storage systems under real-world conditions the tests conducted

using this tools are critical. At determining the systems' efficiency in data

management and retrieval these tests are aimed, their response to varying storage

demands, and their cost-effectiveness too. In this methodology it also includes

analysing the open source cloud storage systems to obtained the results through code

analysis. It provides insights into the architecture and design principles of these

systems, and also goes in deeper approach of the operational efficiencies due to which

this look crucial. Providing a comprehensive analysis of cloud storage systems and

development of an effective benchmarking tool due to which the methodology is

blend to practical evaluation.

Chapter Three Proposed Mechanism

65

Figure 3.3: Flow work of Mechanism

The mechanism outlined in Figure 3.3 illustrates a systematic flow of activities within

the research process focused on the intersection of cloud computing and the Internet

of Things (IoT). It begins with the Cloud IoT Environment, where IoT devices

interact with cloud services. The research methodology, identified as MDPC-DPC,

guides the subsequent steps. Algorithm Implementation follows, involving the

development and application of relevant algorithms. Data Set Collection involves

gathering datasets for analysis and experimentation. A decision point on Cloud

Storage determines whether data is stored in the cloud. Data Management

encompasses organizing and handling datasets effectively. Dataset Utilization

involves using collected data for various purposes, such as training algorithms or

conducting experiments. Finally, Result Analysis examines outcomes derived from

the research, providing insights into the studied phenomena. This structured approach

facilitates comprehensive investigation and analysis of IoT-cloud interactions.

3.3. The Proposed System

MDPC algorithm cloud storage mechanism is designed to store the data in IoT

environment easily. Using this algorithm probabilistic approach that enables the

efficient utilization of cloud storage and availability of data. For the management of

the flow of data packets and prevent congestion MDPC is a congestion control

algorithm that can used in network system of computers. Adjusting the congestion

Cloud-IoT

Environment

Design Research

Methodology

MDPC-DPC

Setting up , Algorithm

parameters

Dataset collection

configuration

Algorithm

implementation

Cloud

storage

Data

management

Implementing Security

Parameters

Dataset Utilization

Result

Analysis

Conclusion Documentation

yes yes

yes

No

No

No

Chapter Three Proposed Mechanism

66

window size based on network conditions it dynamically operates. MDPC

encompasses various subtypes or kinds, therefore, each with its specific

characteristics and approaches to congestion control.

Multiplicative Increase Divisive Decrease (MIDD): In this subtype of MDPC, when

the network is operating efficiently the congestion window size is increased

multiplicatively. However, when congestion is detected, the window size is reduced

and minimized divisively to alleviate the congestion to reduce loss of packets.

3.4.1. MDPC Capabilities

1. Adaptive (MDPC): Adaptive MDPC is a subtype that somehow adjusts its

congestion to control parameters dynamically which is the hold of condition for

network. It continuously measuring the network metrics like round-trip time which

can be written as (RTT), packet loss rate, and available bandwidth to adapt its

multiplicative and divisive parameters. Furthermore, by adapting to changing

network conditions, adaptive MDPC aims to optimize network.

2. Probabilistic (MDPC): Probabilistic MDPC increases or decreases the

congestion window size in a probabilistic manner, by adding normal behaviour to the

congestion process system. Probabilistic MDPC uses probabilities to modify the

window size rather than deterministic rules, which provides a greater capacity for

adaptation in response to changing network conditions.

3. Delay-based (MDPC): The goal of delay-based MDPC is to tackle the control

of congestion latency. The congestion window size is modified in proportion to the

Chapter Three Proposed Mechanism

67

measured delay. Delay-based MDPC may efficiently control congestion in networks

by varying the delay.

Overall, in computer networks, MDPC and its variants offer a vast and adaptable

method of congestion control. MDPC algorithms are designed to minimize packet

loss, prevent congestion-related problems, and maximize network performance by

changing window size in network system.

Chapter Three Proposed Mechanism

68

Figure 3.4: Flowchart of MDPC

Chapter Three Proposed Mechanism

69

Language of programming:

As C, C++, and Python are the languages in which MDPC can be implemented [59].

A number of problems, including code base size, development ease, and

performance, might change the choice of language to be used.

Required libraries:

For better perfomrmace, the MDPC method may need the Multiple Precision

Arithmetic Library (MPAL) or OpenSSL for cryptographic operations.

Configuration and optimization:

Most of the optimization strategies, including parallel processing, vectorization, and

code optimization, can boost the MDPC algorithm's performance.

These methods changes based on the particular hardware and implementation. In

order for the MDPC method to function, each IoT device's storage capacity allotment

must be used in a way to handle the need of storage. It accomplishes this by upholding

a probabilistic congestion control mechanism that regulate the performance of

different techniques used in the computer network.

3.4.2. MDPC Algorithm Phases

1. Probabilistic Allocation: During this stage, the algorithm need to find storage capacity

of each system by using a probabilistic framework. The system determines each device's

likelihood of congestion and gives the storage capacity appropriately.

2. Dynamic Adjustment: in this stage the algorithm keeps an eye on each device's data

usage habits and dynamically modifies its storage allocation to uphold the best possible

use of the resources.

Chapter Three Proposed Mechanism

70

Overall, The MDPC algorithm is a highly approachable for IoT applications that can

assist organizations in lowering storage expenditures.

Algorithm (3.1): MDPC

//Initialize Variables

1: Set 𝐶𝑤𝑛𝑑 (Congestion Window Size) to initial congestion window size

Set ß to initial threshold value

Set 𝐴𝑐𝑘𝑐𝑜𝑢𝑛𝑡𝑒𝑟 to 0

Set 𝑁𝑎𝑐𝑘𝑐𝑜𝑢𝑛𝑡𝑒𝑟 to 0

2: While 𝐶𝑤𝑛𝑑 < ß

3: if received 𝐴𝑐𝑘

4: 𝐴𝑐𝑘𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝐴𝑐𝑘𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1

5: End

6: if 𝐴𝑐𝑘𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ≤ ß

7: 𝐶𝑤𝑛𝑑 =𝐶𝑤𝑛𝑑 x 2 //Multiplicative Increase

8: Reset 𝐴𝑐𝑘𝑐𝑜𝑢𝑛𝑡𝑒𝑟 to 0

9: Reset 𝑁𝑎𝑐𝑘𝑐𝑜𝑢𝑛𝑡𝑒𝑟 to 0

10: End

11: else if received 𝑁𝑎𝑐𝑘

12: 𝑁𝑎𝑐𝑘𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑁𝑎𝑐𝑘𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1

13: End

14: if 𝑁𝑎𝑐𝑘𝑐𝑜𝑢𝑛𝑡𝑒𝑟 > ß

15: 𝐶𝑤𝑛𝑑=𝐶𝑤𝑛𝑑/2 //Divisive Decrease

16: Reset 𝐴𝑐𝑘𝑐𝑜𝑢𝑛𝑡𝑒𝑟 to 0

17: Reset 𝑁𝑎𝑐𝑘𝑐𝑜𝑢𝑛𝑡𝑒𝑟 to 0

18: Calculate a new ß

19: Send data with congestion window size 𝐶𝑤𝑛𝑑

20: End

21: End

The goal of this algorithm is to continually adapt the size of the congestion window

in response to network feedback. To take more use of network bandwidth, the

congestion window size is raised proving that the data was transferred properly. On

Chapter Three Proposed Mechanism

71

the other side, the congestion window size is lowered to relieve congestion and stop

more packet loss as signaling congestion or packet loss are received. This will define

that when to move between the two ways of congestion control, enlarging or

contracting the congestion window size, is made easier by the threshold value ß.

3.4.3. Probabilistic Approach:

The technique uses the current window size (W) and the network congestion level

(C) to determine the probability (P) of a packet being designated as congested.

Because this procedure is probabilistic, a bigger window size or congestion level

increases the likelihood of packet congestion.

Algorithm (3.2): [Dynamic Windows Size Algorithm]

Input: Packet, Congestion Level (C), Current Window Size (W), Multiplicative

Factors (𝑀𝑖𝑛𝑐, 𝑀𝑑𝑒𝑐)

Output: Updated Window Size (𝑊new)

//Probability Calculation

𝑃 = 𝑓(𝑊, 𝐶) ∗ 𝑃 // f(W, C): Function calculating the probability based on W

and C

//Window Size Adjustment

if packet is marked as congested

 if congestion is increasing

 𝑊_𝑛𝑒𝑤 = 𝑊 ∗ 𝑀_𝑑𝑒𝑐

 End

 else

 𝑊_𝑛𝑒𝑤 = 𝑊 ∗ 𝑀_𝑖𝑛𝑐

 End

 𝑅𝑒𝑡𝑢𝑟𝑛 𝑊_𝑛𝑒𝑤

End

Properties MDPC Algorithm

Chapter Three Proposed Mechanism

72

 In digital networks, a particular type of congestion management algorithm used

to manage traffic congestion is the MDPC algorithm. These are a few of the MDPC

algorithm's prominent features:

Feedback Mechanisms: The MDPC algorithm employs both multiplicative and

divisive feedback mechanisms for adjusting the congestion window size:

multiplicative feedback expands or contracts the window size by a factor larger or

smaller than one, while divisive feedback splits the window magnitude by a factor

larger than one.

 1. Probabilistic Control: Because the MDPC algorithm is statistical in their nature,

the congestion window size is chosen based on likelihood. When handling

congestion in systems with a variable and unpredictable manner, this method works

better.

 2. Feedback Signal Estimation: Depending upon the various parameters such as the

round-trip time, packet loss rate, and available bandwidth the MDPC algorithm finds

the feedback signal.

 3. Fairness: Fairness for all flows which are haring network resources is the goal of

the MDPC algorithm [51]. This is achieved by shifting the size of the congestion

window according to the quantity of generated by flows.

 4. Stability: The congestion window size oscillations that the MDPC algorithm is

intended are stable that can be pretend.

 5. Scalability: The MDPC method can be applied to massive networks with

numerous flows. It can effectively handle traffic congestion in these kinds of

networks.

Chapter Three Proposed Mechanism

73

3.4.4. Key Properties When Use MDPC in IoT Environment

 To take into consideration, some important characteristics while employing the

MDPC algorithm include:

 1. Adaptability: Because of its adaptability, the MDPC algorithm can be used to

dynamically alter the size of the congestion window.

 2. Low Latency: Low latency is important for applications that are real-time in an

Internet of Things context.

 3. Energy Efficiency: Energy efficiency is crucial for Internet of Things (IoT)

devices since their battery life is often limited [45].

 4. Robustness: When a network splits a link fails, or a node fails, the MDPC

algorithm remains resilient and unaffected [48]. Then the MDPC change the

environment which is comes in Robustness.

 5. Scalability: The MDPC algorithm finds application in extensive IoT systems

containing numerous devices is the function of scalability.

 6. Security: Security is a major concern in an IoT context. The MDPC algorithm can

guarantee the use and safety of data transferred over a network by working with

communication protocols.

Mathematical Model

1) Objective Function

Let consider the f (x) be the objective function to be optimized, where the vector

of decision variables is x. Therefore, the objective is usually either to maximize or

minimize f(x).

2) Constraints

To define feasible regions for the decision variables the optimization problem may

have constraints. Therefore, these constraints can be represented as equality or

inequality constraints, However, it is denoted as;

Chapter Three Proposed Mechanism

74

g(x) < 0 or h(x) = 0 (3.1)

3) Decision Variables

Let consider the x = (x1, x2,...,n) that usually represent the decision variables.

Therefore, for optimization of problem these variables determine the solution.

4) State Space

For all possible states of the system at any given point in time are represented by

state space. However, each state

 is associated or can say bonded with a set of decision variables and constraints.

Mathematical Formulation

Let's denote the following:

• S: Is state space that represents all possible states of the system.

• A(s): For the set of feasible actions or decisions state s is available.

• T(s, a): For the probability distribution of transitioning from state s to state s' after

taking action a state transition is represented.

• R(s, a): Immediate reward or cost associated by taking action a in state s.

* V*(s): From state s to the terminal state the optimal value function representing

the maximum expected cumulative reward.

Q*(s, a): The maximum predicted cumulative reward from executive action an in

state s and afterwards adhering to the best policy represented by the optimal action-

value function.

MPDP for the dynamic programming recursion can be formulated as follows:

V*(s) = max {R(s, a) + Σ T(s,a, s') · V' (s')} (3.2)

The optimal action-value function Q*(s, a) is given by:

Q*(s, a) = R(s, a) +ΣT(s, a, s′) · V* (s') (3.3)

Based on research, the MDPC algorithm is essential for efficiently managing

network congestion and maximizing data transmission. MDPC is included into the

Chapter Three Proposed Mechanism

75

mathematical model of the research and dynamically modifies the congestion

window size based on network. The technique employs a probabilistic

methodology to identify congestion by computing the likelihood of packet

congestion. When congestion is present, the window size is decreased by a higher

multiplicative factor, and when network operation is efficient, it is increased by a

lower additive factor. MDPC can sustain peak performance and efficiency because

of its dynamic adaptation to network conditions, such as round-trip time, packet

loss rate, and available bandwidth. However, MDPC is thoroughly tested and

compared with alternative congestion control algorithms in the research's

benchmarking environment to determine its efficacy and applicability for a range

of network situations. All things considered, Therefore, MDPC makes a substantial

contribution to the goals of the research by improving multimedia data processing

and sharing via effective congestion control and optimization techniques.

Storage Cost:

A mathematical model for analyzing storage costs per algorithm over time or

under different workload situations, a basic formula that captures the essence of

how storage costs vary based on algorithm choice and workload conditions. Let

C'(t, A) represent the storage cost per unit of time t for a specific algorithm A.

The storage cost C'(t, A) can be expressed as:

C(t, A) = C1 × f(t, A)

where: Co is the base storage cost per unit of time (e.g., per hour, per day, per

month).

f(t, A) is a function that represents how the storage cost varies over time t and

with respect to algorithm A. The function f(t, A) can incorporate various factors

such as workload intensity, data volume, and specific characteristics of the

Chapter Three Proposed Mechanism

76

algorithm A. This function is typically customized based on the research context

and the specific metrics being evaluated, f(t, A) might be defined as:

f(t, A) = WorkloadFactor(t) × AlgorithmImpact(4) where: WorkloadFactor(t)

represents the workload intensity at time t. AlgorithmImpact (4) captures the

impact of algorithm A on storage costs. This model provides a framework for

quantifying and comparing storage costs across different algorithms and

workload scenarios, allowing researchers and stakeholders to make informed

decisions regarding resource allocation and cost-effectiveness measures in cloud

computing environments.

3.4. MDPC Algorithm and Difference with DPC

 Although the goals of the MDPC and DPC algorithms are similar, they approach

the task differently. Consequently, MDPC constantly alters the congestion window

size by probabilistically increasing or decreasing it in response to network conditions

by using multiplicative and dividing factors. Afterwards, DPC employs an exact

approach in which the size of the congestion window is adjusted based on specified

thresholds and probabilities, in contrast to MDPC, which uses multiplicative and

divisive factors. While Hence, MDPC enables flexibility to changing network

conditions through probabilistic adjustments, DPC offers deterministic control over

changes in the congestion window size and may offer more predictable behavior in

particular network scenarios.

3.5. Deduplication Technique

 In the instance cited previously, preservation expenditures can be eliminated and

storage efficiency can be increased by using a cloud storage mechanism that uses the

deduplication methods. Therefore, the steps for applying the deduplication approach

to implement cloud storage are as follows:

Chapter Three Proposed Mechanism

77

1) Data Segmentation: From the wireless multimedia sensors can be segmented

into smaller chunks that are collected by multimedia data. Therefore, each

chunk is given a unique knowing or hash value.

2) Data Deduplication: These hash values of the data chunks which are checked

for duplicates. If there are any duplicates, only one copy is stored in the cloud

storage. For improving storage efficiency the previous storage is minimized. It

is an efficient and important problem or method in the process of handling and

storage of a vast amount of data and is imminent in identifying duplicate

content with the implementation of cryptographically secure hash signature.

Simultaneously, for the reduction of the transmission of redundant data

particularly in low-bandwidth network environments it also helps.

3) Indexing: For all the data chunks and their hash values an index is maintained.

For identifying whether a particular data chunk already exists in the cloud

storage or not this index help out quickly as much possible. For smooth

retrieval of entries from database files indexing helps and also with the

implementation of attributes that have already been indexed.

4) Encryption: Before storing in the cloud storage the multimedia can be

encrypted, just by means of data security and privacy. For decrypting the data

only authorised users with proper authentication are allowed and have rights

to do. Encryption is generally employed in order to encrypt data in the process

of outsourcing it.

5) Data Retrieval: When a user requests for a particular multimedia data, the

cloud storage system retrieves the corresponding data chunks and reconstructs

the original multimedia data. Overall, cloud storage mechanism using

deduplication technique provides efficient storage and retrieval of multimedia

Chapter Three Proposed Mechanism

78

data in a secure and reliable manner. It reduces the storage overhead and

improves storage efficiency by storing only unique data chunks.

 Algorithm (3.3): Deduplication pseudo-code

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

//Initialize:

 - Initial segment = 0

 - End segment = 1024

 - New segment = end segment + 1024

 - Initialize an empty list for storing hashes and their corresponding indexes

 - Initialize an empty list for storing duplicate segments

for each received packet from sensors:

 a. Divide the packet into segments of size 50 MB

 b. For each segment:

 i. Calculate the hash of the segment

 ii. Find the index for the segment (this can be a cloud storage path for

retrieval)

for each segment:

 Check if the hash of the segment exists in the list:

 if it does:

 Mark the segment as a duplicate

 Add the index of the segment to the list of duplicate segments

 if it doesn't:

 Save the hash of the segment along with its index in the list

for each duplicate segment in the list:

 Encrypt and save only one instance of the duplicate segment

Chapter Three Proposed Mechanism

79

3.6. Enhanced Congestion Control Mechanism

 For modifying the DPC algorithm into the MDPC algorithm, the following given

changes can be made:

Introduce a window size: In the MDPC algorithm, to limit the number of packets in

flight a window size is introduced. Therefore, without acknowledgement from the

receiver, the window size determines the amount of data that can be transmitted.

Further, the window size is adjusted in dynamically that is based on the current

network conditions.

Additive-increase, multiplicative-decrease: The success or failure of packet

transmission the window size is updated and also based upon it. The window size is

increased by a small additive factor but, if a packet is successfully transmitted.

Similarly, the window size is decreased by a larger multiplicative factor, if the packet

is lost. This is somehow similar to the Additive-Increase/Multiplicative-Decrease

(AIMD) algorithm that is used in TCP congestion control.

Introduce a probabilistic approach: The window size in the MDPC algorithm can be

modified using a probabilistic method. Depending on the network's congestion level

and window size, the probability of a packet being flagged as congested is determined

[67]. However, window size increases the likelihood of a packet being identified as

congested. This probabilistic method ensures a steady and effective window size

adjustment for the computer network.

Add a multiplicative-divisive component: A higher multiplicative factor is applied to

shrink the window size as the packets overload over a network. This keeps the

network from breaking due to congestion.

Overall, a probabilistic approach and a multiplicative-divisive component are added

to congestion control by the MDPC approach, which is an extension of the DPC

algorithm [55].

Chapter Three Proposed Mechanism

80

3.7. Analysing the MDPC behaviour for the CDC

 MDPC is a technique which is designed to control the extent of a network

communication protocol's congestion window, such TCP. MDPC demonstrates the

subsequent actions:

1. Responsiveness: MDPC is made responsive, such as variations in the quantity of

available bandwidth and the degree of congestion. It modifies the dimension of the

congestion window, including packet loss and delay, based on network feedback.

2. Stability: The congestion window size should not oscillate excessively because

MDPC is supposed to be steady. It manages this by utilizing a probabilistic method

of window size adjustment, in which the likelihood of changing the window size

depends on the amount of congestion at the moment.

3. Fairness: The MDPC architecture aims to distribute network resources among

competing flows in a fair manner. It accomplishes this by modifying the congestion

window size using a multiplicative decrease and divisive increase strategy, which

criminalizes flows that lead to delay and rewards flows that alleviate it.

4. Efficiency: The MDPC protocol is engineered to optimize network resource

utilization. This is accomplished by dynamically modifying the congestion window

size in response to the state of the network, allowing it to achieve maximum the

utilization of the network without creating congestion.

Overall, by controlling network congestion in a responsive, stable, equitable, and

effective manner, MDPC exemplifies the fundamental elements of congestion

management. However, the way the algorithm is implemented and configured in a

specific network environment could impact how MDPC behaves in that particular

scenario.

Chapter Three Proposed Mechanism

81

Figure 3.5: Implemented Model

The above block diagram depicts the MDPC technique's comprehensive integration

with the cloud storage infrastructure, illustrating the intricate interactions between

various units within the system. At its core, the Cloud Storage System functions as a

robust multimedia data repository, facilitating efficient data management across the

platform. The Data Retrieval Module orchestrates seamless access to stored data,

ensuring swift and reliable retrieval processes. Simultaneously, the Encryption

Module plays a pivotal role in enhancing data security by implementing advanced

encryption techniques to safeguard sensitive information. Furthermore, the

Deduplication Module optimizes storage space utilization by meticulously

identifying and eliminating duplicate data entries, thereby streamlining storage

efficiency. The integration of the MDPC Algorithm is pivotal, harmonizing its

functionality seamlessly with the architecture of the system. Meanwhile, the Key

Generation Module assumes responsibility for generating encryption keys, fortifying

the security measures implemented throughout the system. Concurrently, the

Chapter Three Proposed Mechanism

82

Performance Simulation Module conducts rigorous evaluations to assess system

performance under various scenarios, ensuring optimal functionality and reliability.

Facilitating user-system interactions, the User/Application Interface serves as a

gateway through which stakeholders engage with the system, providing intuitive and

user-friendly access to multimedia data management functionalities. Through these

interconnected units, the system operates cohesively to deliver robust, secure, and

efficient multimedia data management capabilities within the cloud environment.

The figure 3.5 shows the MDPC technique's thorough interaction with the cloud

storage infrastructure. Fundamentally, the Cloud Storage System acts as a multimedia

data repository, enabling effective data management. The Data Retrieval Module

ensures seamless access to stored data, while the Encryption Module enhances data

security through encryption techniques. Additionally, the Deduplication Module

optimizes storage space by identifying and eliminating duplicate data entries. The

MDPC Algorithm Integration is pivotal, harmonizing the algorithm's functionality

with the system's architecture. Key Generation and Performance Simulation Modules

play essential roles, generating encryption keys and evaluating system performance,

respectively. Through a User/Application Interface, stakeholders interact with the

system, ensuring user-friendly access and management of multimedia data.

 The MDPC codes are also designed using the binary cyclical through construction

of the polynomial parity check that is obtained directly from the idempotent code

using the cyclotomic cosets. The design of the MDPC codes include a lower

complexity for the encoding and decoding scheme with the practical utilisation of the

study. It also proposes a lower complexity of SISO diversity decoder [66]. The AD

decoder includes the use of a small number of parity checks that are redundant and it

attempts to minimise the operations that are not included in the regular algorithm.

The decoding algorithms initially begins with decoding the length in with soft input

Chapter Three Proposed Mechanism

83

vector that makes use of the regular algorithm sum product with (m * n) that is

redundant according to the matrix of parity check that consists of the decoder that

operates over the MDPC codes.

3.8. Theoretical Comparison

 Rabin is a well-known duplication technique for use with CDC algorithms;

nonetheless, it has a very poor chunking throughput and a substantial amount of

chunk size volatility. The TTTD broke up data into smaller pieces, but it was unable

to pinpoint where data duplication was occurring to account for the larger chunk

sizes. In addition, since the processing time has increased, it adds to the overhead that

is associated with indexing. In the end, the chunking AE method was superior to the

Rabin in terms of the number of low-entropy strings it removed. We suggest using

the dynamic prime chunking algorithm as a means to improve the throughput and

take the performance to an even higher level.

● Low chunking throughput and time consumption are problems with Rabin.

● The TTTD algorithm adds a minimum and maximum threshold to lessen chunk

volatility. The threshold is applied using a backup divisor. For bigger chunks,

data deduplication cannot be properly recognised. Additionally, the longer

processing times result in extra expense for indexing.

● Deduplication efficiency is also much greater in AE. Additionally, the

computational cost is greatly reduced, and the tiny chunk variance is raised.

To reduce the computational cost in the MDPC algorithm, the following techniques

can be employed:

● Use Fixed Probability: Instead of calculating the probability of packet marking

based on the window size and congestion level of the network, a fixed

probability can be used [45]. To reduce computational cost, the probability of

each packet should be compute.

Chapter Three Proposed Mechanism

84

● Limit the number of packets marked: certain limited and congested packets

should be marked instead of marking overall packets.

● Use Sampling: A sampling approach can be used to monitor a subset of packets

instead of marking each packets. This reduces the amount of time and reduces

the computational cost.

● Use Approximation Techniques: Approximation techniques can be used to

estimate the probability of packet marking.

3.9. Benchmarking Tool for Cloud Storage in IoT

 The global rise of cloud computing along with the development of many cloud

storage systems have been built with the objective of providing decentralised and

reliable file storage. Therefore, it is important to be well aware of their specific

features and performances along with the ways through which it could be optimally

used. The market witnesses an exponential rise in cloud storage systems nowadays,

and therefore certain guidelines could be instrumental in choosing the appropriate

system that can potentially satisfy the requirements. [60] The storage systems are

found to have more or less similar functions and therefore springs up the requirement

of benchmarking it.

These days, there are a great number of cloud storage solutions available, and there

are always new companies entering the market. As a result, we need some direction

to pick the proper solution that will provide the highest level of satisfaction for needs.

We need to evaluate these cloud storage systems since the performance of the systems

is a major concern that we need to take into account, and because many cloud storage

systems share similar duties, this is why we need to compare them. The following are

some examples of probable situations when it may be beneficial to have a benchmark.

• Select the quickest cloud storage for regular usage

Chapter Three Proposed Mechanism

85

Suppose a user is going to give any cloud storage system a try so that he may store

his data in the cloud and synchronise the information across the computers in his

home and office. The customer's primary concern is that the service should be able

to upload and download files as quickly as feasible. A benchmarking has to be done

in order to establish which cloud system has the greatest performance when it comes

to the uploading and downloading of files. This is necessary since different cloud

systems have different network bandwidth and different locations for their data

centres.

 Certain aspects should be borne in mind prior to choosing the ideal cloud storage

system such as the storage location as the physical location of a cloud server can

potentially affect the recovery and the performance. Simultaneously, there could be

problems regarding compliance or regulatory requirements on data storage locations

therefore, the decisions regarding locations should be based on the importance of the

data, authorisation and cost. [61] In addition to this, problems regarding security are

of top concern when it comes to cloud storage and therefore it should be emphasised

that while the protection of the data is the responsibility of the cloud service provider

the user also is responsible to maintain security guidelines while transferring data on

cloud server.

 Additionally, performance evaluation is yet another important factor in the

process of finding the appropriate cloud service. Certain performance related aspects

such as response time, processing time, bandwidth, latency, CPU, infrastructure,

RAM and so on are critical in the process of choosing cloud storage. In addition to

this, the viability of integrating along with other applications should also be

prioritised. Therefore, prior to selecting the cloud storage “Application Program

Interface (APIs)” should be assessed. [63] In addition to this, the compatibility of the

Chapter Three Proposed Mechanism

86

cloud server with the existing applications as well as storage devices should be

checked in order to ensure the ease of accessibility.

• Backend Storage System

Many of the web applications that we use today store the data of their users in the

user's own personal cloud system, as opposed to storing the data in a dedicated server

that is maintained by the application's developer. This is made possible by the

development of SaaS and mobile computing. As the developer of an application that

makes use of a cloud storage service, he may need to be aware of the most effective

technique to make use of the service. For instance, while uploading data to the cloud,

is it possible to make advantage of multithreading? If the answer to that question is

affirmative, then how many different threads should be employed to provide the

highest possible performance? Should the data be divided up into many files of a

lower size before it is uploaded if we want the uploading of enormous amounts of

data to go as smoothly as possible? In order to provide answers to such problems, a

benchmark is often seen as being beneficial for evaluating the levels of performance

achieved by using various cloud storage service utilisation methodologies.

• Analyze the effectiveness of Cloud Storage

 The vast majority of the cloud storage solutions that are available to us today were

developed for typical, day-to-day activities such as the casual archiving of images,

audio tracks, and documents. However, being a cloud storage system with a broad

range of applications, it is possible to utilise it for purposes other than the typical,

everyday ones. It is feasible, for instance, to utilise a cloud storage service as the

backend storage system of an Internet of Things thesis with multiple sensors that

constantly take data from the environment and transfer it simultaneously to the

backend. This particular use case differs from others in that it involves

simultaneously uploading a huge number of little files that have been generated in

Chapter Three Proposed Mechanism

87

enormous quantities. A benchmark is always required in order to investigate whether

or not a cloud-based storage system can be used in a certain situation and to evaluate

its performance.

 In a nutshell, doing benchmarks on cloud storage systems is beneficial in a variety

of different ways. In point of fact, we are able to do ad hoc benchmarking manually;

but, doing so will need a significant amount of time, and the procedure itself will be

difficult to replicate. In addition, if one has to carry out sophisticated benchmarks,

such as multithreaded uploading with random file creation, it is often impossible to

avoid the need of developing scripts and programming. Because of these drawbacks

of manual benchmarking, an automated benchmarking tool is the key to improving

the efficacy of benchmarking jobs. This is the motivation for the creation of

BenchCloud, which was developed specifically for this purpose.

3.10.1. System Architecture Goals

a. Flexibility

Flexibility in BenchCloud refers to its adaptability to a wide range of benchmarking

needs. For this reason, BenchCloud is designed with high configurability and

extensibility. The ability to configure enables users to make fine-grained

modifications to benchmarking variables, like choosing which cloud storage system

to evaluate, establishing the actions to be performed (like transferring or uploading

files), embarking the number of operations, and figuring out what number of threads

to execute. On the other hand, flexibility confirms that BenchCloud can grow to

support new cloud services and add new functionalities without that demand

substantial modifications to its current features. However, this flexibility is

particularly important in the context of cloud computing, where the capacity to adjust

applications access from internet connection highly valued. Therefore, the ease of

Chapter Three Proposed Mechanism

88

data access and storage on the cloud, as well as its capacity to scale capacities and

quickly adjust to buyer demands, have contributed to its growth in popularity.

b. Usability

Providing a user encounter that is both easy to use and intuitive is the goal of

BenchCloud usability. Although, BenchCloud being written in Python, the system

recognizes that not all users have a background in this words, hence configuration

files are used to allow modification. With minimal technical expertise, users can

effortlessly alter nearly all of a benchmark's settings due to these files. Similarly, in

the context of cloud computing, where a wide range of users and service providers

frequently find the abundance of possibilities daunting, this approach to usability is

especially important. BenchCloud improves usability by streamlining the

configuration process, which makes it easier to find to a wider variety of people.

Hence, this role is crucial for guiding clients through the intricate nature of cloud

services and aiding consumers in making selections especially if choosing resources

for deployment such as virtual machines (VMs).

Figure 3.6: System Architecture of Bench Cloud

Advantages that are unique and obvious for each cloud client, as well as cloud service

providers, are what is driving the increase in the use of cloud computing. Consumers

now find it more difficult to select a cloud provider due to the growth in both the

Chapter Three Proposed Mechanism

89

number of operators and the type of services they deliver [67]. A difficulty for

internet service providers is also presented by the variety of alternatives for

constructing a cloud infrastructure, including cloud administration tools and various

networking and storage techniques. Considering choosing “virtual machines (VMs)”

to use for the deployment of an implementation, asset benchmarking might be useful.

Performance benchmarking is crucial to comprehend the dependability and volatility

of the cloud-based services delivered [71].

3.10.2. System Architecture of BenchCloud

 BenchCloud utilizes an architecture that is layered. As can be seen in Figure

3.5, it is composed of three primary layers.’

a) The API Driver Layer

(a) Test via web APIs

Cloud storage services

A

P

I

Bench

cloud

Tester’s computer

Cloud storage services

A

P

I

Chapter Three Proposed Mechanism

90

(b) Test via synchronization client

Figure 3.7: (a), (b) Two styles of test architecture

The Application Programming Interface (API) Driver layer is responsible for

providing communication end points to cloud storage providers. It provides cloud

service wrappers that the Operators layer may use to activate cloud services. A cloud

service wrapper establishes communication with cloud storage services by using

RESTful APIs, and it offers features such as service authentication and authorization,

the acquisition of file metadata, file uploading and downloading, file sharing, and

other similar features. The "uploading" and "downloading" of files to and from the

tester's local file system is handled by a specialised driver known as the "Local FS

driver." The Local FS driver, in contrast to other drivers, does not utilize online APIs

that are accessed from cloud storage services. Instead, it simply performs standard

file copy operations inside the confines of the local file system. In the event that you

do not want to test against online APIs but rather to the native clients of some cloud

storage services, you will need to make use of a local file system driver. The

synchronisation client for these kinds of systems runs on the users' computers and

synchronises the users' local data (often inside a designated synced folder) with the

cloud.

By "uploading" files to the synchronized folders and letting the synchronization client

handle the processing and actual uploading operation, can study the client in some

ways and see what kinds of optimization it engages in. Such a client may have

interesting features that cannot be discovered by testing against web APIs directly.

Tester’s computer

Tester’s computer

 Bench

Cloud

Scan folder

Chapter Three Proposed Mechanism

91

The high-level testing architecture may be split into two different forms, as illustrated

in Figure 3.6, depending on whether a web API or client is to be evaluated.

b) The Operators Layer

The Operators Layer serves as an intermediary between the user-facing applications

and the API Drivers layer, translating high-level actions into specific API calls. This

layer encapsulates the complexity of interacting with various cloud storage APIs by

providing a unified interface for common operations such as uploading and

downloading files. While doing that way, it abstracts away the peculiarities of

different cloud storage providers, enabling programmers to create code independent

of the cloud service that underlies it. Basically operators layer is used which allows

every user to develops its app without having an approach to the API of IoT cloud

storage system. Because, it makes it easier to update or substitute API Drivers without

making major modifications to the application logic, this layer is essential to the

scalability and upkeep of cloud storage applications.

c) The Benchmarking Runner Layer

The task of parsing and loading configuration files and running the benchmark

depending on the configuration falls within the purview of the Benchmarking Runner

Layer. The logger is in charge of meticulously recording all of the precise actions and

time spent while running benchmarks. When doing benchmarks for uploading files,

benchmarking runners often utilizes a tool called a file generator to generate files

depending on specified setup. There are four basic types of file generators that

provide various file content patterns:

• Random File Generator. It generates files with unpredictable content that are

difficult to compress well and very unlikely to share the same content as other

created files.

Chapter Three Proposed Mechanism

92

• Identical File Generator. A succession of identical files is created using an

identical file generator. It is crucial for evaluating a cloud storage system's file

deduplication function.

• Sparse File Generator. It produces files with little material. Content that has

repeated strings is said to be sparse. A high compression rate may be used to

effectively compress files created by a sparse file generator. A crucial component

of evaluating a synchronization client's file compression capability is the sparse

file generator.

• Delta File Generator. A delta file generator creates a number of identically

contented files that are all the same size. The contents of the remaining portions

of the files are random and not similar. A synchronization client's delta encoding

functionality must be tested using the Delta File Generator.

In order to capture and dump network packets during a benchmark, a trac capturer is

included in the benchmarking layer. The resultant dump file's data format, PCAP6,

is one that is widely used for recording network packets and can be read and analysed

by a variety of packet capture and analysis programmes, including Wireshark7. The

packets created, allowing for use in post-analysis to examine the characteristics of

the network traffic the PCAB format keeps its record.

3.11 Key Concepts

This section provides an overview of fundamental concepts focusing on Data

Segmentation, Data Deduplication, Indexing, Encryption, and Data Retrieval as

integral components of modern data processing and storage systems.

Data Segmentation

Chapter Three Proposed Mechanism

93

Data Segmentation involves dividing large datasets into smaller, more manageable

segments based on specified criteria such as file size, file type, or content. The

objective of Data Segmentation is to optimize data storage and retrieval efficiency by

organizing data into logical units that can be accessed and processed independently.

In our research, we employed a dynamic segmentation approach that adapts to

changing data patterns, ensuring optimal resource utilization and scalability.

Data Deduplication

Data Deduplication is a technique used to eliminate duplicate copies of data, thereby

reducing storage overhead and improving data efficiency. Our research focused on

implementing content-aware deduplication algorithms that identify and remove

redundant data chunks, leveraging advanced hashing and indexing methods to

achieve high deduplication ratios without compromising data integrity or availability.

Indexing

Indexing plays a crucial role in facilitating efficient data retrieval by creating

searchable structures that map data attributes to corresponding locations within a

dataset. We explored various indexing techniques, including B-tree and hash-based

indexing, to accelerate data access operations and support complex query processing.

Our approach prioritizes index maintenance strategies to ensure optimal performance

in dynamic data environments.

Encryption

Encryption is essential for securing sensitive data during storage and transmission by

transforming plaintext information into ciphertext using cryptographic algorithms.

Our research emphasized the implementation of robust encryption protocols, such as

Chapter Three Proposed Mechanism

94

AES (Advanced Encryption Standard), to safeguard data confidentiality and

integrity. We integrated encryption mechanisms seamlessly into our data

management framework to ensure end-to-end security across diverse data processing

workflows.

Data Retrieval

Data Retrieval encompasses techniques for accessing and retrieving stored data

efficiently based on predefined search criteria. Our research focused on developing

scalable retrieval methods, including inverted indexing and probabilistic retrieval

models, to support rapid data access and retrieval across distributed storage

architectures. We emphasized the importance of query optimization and caching

strategies to enhance retrieval performance in real-world applications.

In summary, this research underscores the significance of integrating advanced data

management concepts, including Data Segmentation, Data Deduplication, Indexing,

Encryption, and Data Retrieval, to optimize data storage, security, and accessibility

in modern computing environments. By leveraging these key concepts, we aimed to

enhance the efficiency and effectiveness of data management systems while

addressing critical challenges associated with large-scale data processing and storage.

Contributions in Algorithm Selection and Implementation

In this section, the research delineates the specific contributions related to algorithm

selection and implementation that have been pivotal to advancing the effectiveness

and efficiency of this research.

Chapter Three Proposed Mechanism

95

Algorithm Selection Rationale

A key contribution of our research lies in the meticulous selection of algorithms for

critical stages of data management, including Data Segmentation, Data

Deduplication, Indexing, Encryption, and Data Retrieval. Each algorithm was chosen

based on rigorous evaluation and comparison against alternative techniques,

considering factors such as performance, scalability, complexity, and suitability for

diverse data processing scenarios.

For instance, in the realm of Data Segmentation, we opted for dynamic segmentation

algorithms that adapt to evolving data patterns, enabling optimized resource

utilization and enhanced scalability. Similarly, approach to Data Deduplication

involved content-aware techniques that leverage advanced hashing and indexing

methods to achieve superior deduplication ratios without compromising data

integrity.

Implementation and Innovation

This research contributes significantly to algorithm implementation by demonstrating

innovative approaches to integrating selected algorithms into a cohesive data

management framework. This also provides detailed insights into the operational

mechanics of each algorithm, highlighting their roles in enhancing data storage

efficiency, security, and accessibility.

Furthermore, this introduce novel enhancements and optimizations to algorithm

implementations, addressing specific challenges encountered in real-world data

processing environments. For instance, encryption implementation emphasizes the

Chapter Three Proposed Mechanism

96

seamless integration of robust cryptographic protocols to ensure end-to-end data

security without compromising system performance.

Scientific Explanation and Code Illustration

A crucial aspect of this research is contributions to the scientific elucidation of

selected algorithms, accompanied by illustrative code snippets and implementation

details by striving to demystify complex algorithmic concepts, making them

accessible to researchers and practitioners in the field of data management.

By providing clear explanations and tangible examples of algorithmic

implementations, this empowers stakeholders to leverage cutting-edge techniques

effectively in their respective domains, fostering innovation and advancement in data

management practices.

Overall Impact and Significance

The contributions in algorithm selection and implementation presented in research

underscore the transformative potential of adopting sophisticated data management

strategies. By elucidating the rationale behind algorithm choices and demonstrating

their practical implementations, aim to catalyze advancements in data storage,

processing, and security across diverse application domains.

Chapter Four

System Implementation and

Results

Chapter Four System Implementation and Results

92

Chapter 4

System Implementation and Results

4.1. Introduction

 Envision an array of little data collectors dispersed over an area, every one of

them recording moments of sound, vision, and potentially even motion. These

wireless multimodal sensor nodes resemble whisperers of a thousand tales just

waiting to be discovered. Yet, a conduit is required for their voices to travel from

their detectors to the outside world. That's where the MDPC technique's magic,

along with revolutionary routing protocol, comes into play. However, the stage

needs to be properly set before the music starts.

Consider it as creating a tiny metropolis specifically for these data whisperers. First,

we need buildings—tiny, intelligent houses known as processors or

microcontrollers. Therefore, these tech-savvy youths will handle computation,

manage the operating system, and plan communication. However, each home

requires a distinct type of occupant: robust processing units for the base station, the

hub, and more economical models for the sensor nodes, which all carefully drain a

tiny battery like mice.

To keep everything functioning well, each home therefore needs an operating

system, or ruleset. Here, efficiency is crucial, acting as a tiny traffic cop to ensure

that data moves smoothly, particularly for those ephemeral seconds that are caught

in a murmur or a flash. Therefore, debuggers and software wrenches are needed to

fine-tune the system and to develop this city. Of course, a language is also necessary.

Similarly, this language needs to be one that little processors can comprehend and

in which networking and MDPC programs can work their magic.

Chapter Four System Implementation and Results

93

But housing and regulations are not all that the city needs. Safety precautions such

as walls and gates guard the secrets these sensors murmur. Somehow, power plants

are also essential to carefully monitoring energy so that data whisperers don't go

silent too quickly. Lastly, the city needs to be flexible, expanding and evolving in

response to new detectors and the whispers that they provide.

Make room for a symphony of sensors by carefully building this foundation. Once

all the pieces are in place, innovative methods for routing and the ingenious MDPC

algorithm can take center stage, converting tidbits of information into an enthralling

chorus and telling a tale through a thousand tiny senses.

an organization configuration that is capable of supporting both the routing protocol

and the wireless multimedia sensor network. This topology can be either tree, mesh,

or star. It is important to maximize energy consumption and minimize

communication overhead when designing the topology. The protocol needs to be

built with the special needs of multimedia data in mind, including low latency and

high bandwidth. Additionally, the protocol needs to be built to manage the dynamic

features of sensor networks with wireless links, like node movement and failures.

Therefore, every sensor node and base station ought to execute the protocol using

the proper software tools and language of programming. The routing table,

transmission power, and MDPC settings, among other things, should be configured

appropriately on the nodes. Yet, it is necessary to test the network to confirm that

the MDPC method and interface are working appropriately.

Performance Evaluation: Throughput, latency, energy consumption, and packet

delivery ratio should all be taken into consideration when assessing the effectiveness

of the MDPC algorithm. Here, to make sure the protocol works in real-world

situations, the evaluation needs to be carried out in an actual setting. In general,

careful consideration of hardware and software requirements, network topology,

Chapter Four System Implementation and Results

94

protocol design, implementation processes, and efficacy analysis will be crucial to

the effective application of a unique routing technique for wireless multi-media

sensors utilizing the MDPC algorithm.

4.2. MISD Dataset

 In in the research, The MISD Dataset is the main source of data used to

assess the scalability, reliability, and efficiency of the MDPC algorithm in IoT

settings. Researchers as well as developers can conduct experiments, analyze data

patterns, and evaluate the algorithm's performance and efficacy with regard to

multipath data collection and routing using the dataset.

MISD Dataset Description:

The Multipath IoT Sensor Data (MISD) Dataset is a valuable resource consisting of

sensor readings gathered from a network of IoT devices deployed across different

environments. This dataset is curated to evaluate and test multipath routing

algorithms like MDPC within wireless sensor networks and IoT systems. The key

characteristics of the MISD Dataset are as follows:

Number of Rows: The dataset comprises a total of 10,000 rows of sensor readings.

Number of Columns (Features): The dataset contains 8 columns representing various

attributes of sensor data.Features include:

Sensor ID: Unique identifier for each IoT device.

Timestamp: Time when the sensor reading was recorded.

Temperature: Recorded temperature in Celsius.

Humidity: Percentage of humidity.

Motion Detected: Boolean indicating presence of motion.

Light Intensity: Intensity of light measured.

CO2 Level: Concentration of CO2 in parts per million (ppm).

Event Type: Ground truth labels denoting specific events or anomalies.

Chapter Four System Implementation and Results

95

Deduplicate Implementation

 The proposed mechanism was implemented using the CloudSim simulator in

Java, as follows:

4.3.1. Data Segmentation

 Data segmentation is the process of grouping the similar categories of data

based on the specific parameters in order efficiently use them. It helps the cloud

service providers easily stock the data along with having proper knowledge of

locations of all the files. It also helps the users easily access the correct data within

a minimum amount of time [74]. During data segmentation, the memory is divided

into small parts of various sizes in order to manage the memory of the cloud system

effectively. Each small part of the memory is referred to as a segment of the process.

K-means clustering segmentation is used for the purpose of image segmentation in

the cloud storage system. There is another algorithm called FCM, which helps to

categorise the pixels of the image into different classes in order of their varying

degree of membership. K-means is a very simplified machine-learning algorithm. It

helps to classify any image through the implementation of specific numbers of

clusters [75]. It initialises its working process by grouping the image space into K

pixels, which represent the centroids of the K group. Each group is assigned with an

object based on the distance of separation between them and the centroid.

Here's an example of data segmentation for the above scenario with tables and

graphs:

Assume have a multimedia data file of size 50 MB. To segment this data into smaller

chunks, can use a fixed-size segment of 1 MB each. This means will have 50

segments of 1 MB each.

Table 4.1 Data Segmentation

Chapter Four System Implementation and Results

96

Segment Number Start Offset End Offset Size

1 0 1048575 1 MB

2 1048576 2097151 1 MB

3 2097152 3145727 1 MB

...

50 47185920 48234495 1 MB

 As shown in table 4.1 , the 50 MB multimedia data file is divided into 50 segments,

each of 1 MB size. These segments are identified by their segment number and start

and end offsets. The segmentation graph shows the 50 MB data file divided into four

segments of 1 MB each. This segmentation process makes it easier to handle large

multimedia data files and helps in efficient storage and retrieval of data in a cloud

storage environment.

Figure 4.1 Segment Number

Chapter Four System Implementation and Results

97

As shown in figure 4.1, the segmentation chart displays the start and end offsets for

each segment number. Here's what you can observe from the chart:

X-axis: Segment Number - Each segment is represented along the x-axis, ranging

from 1 to 50. Y-axis: Offset - The offset values (in this case, start and end offsets)

are represented on the y-axis. Start Offset: Marked with circles ('o') - Each circle

represents the start offset of a segment. End Offset: Marked with crosses ('x') - Each

cross represents the end offset of a segment. Trend: As segment number increases,

both start and end offsets increase linearly. This suggests a consistent segmentation

pattern where each segment has a fixed size.

The above graphic design shows a clear visual representation of the segmentation

pattern, However, making it easy to understand that how the data is divided into

segments.

4.3.2. Data Deduplication

Here's an example of deduplication for the above scenario:

Assume have collected multimedia data from 10 wireless multimedia sensors. Each

sensor has captured a video of size 50 MB. To store this data in a cloud storage

system, can use deduplication techniques to reduce storage overhead and improve

storage efficiency.

Table4.2: Data Deduplication

Sensor ID Segment Number Hash Value

Sensor 1 1 2f8085b95f5b26cf

Sensor 1 2 3b9ebc534f2ea695

Sensor 1 3 7e70d10845f8c2b2

...

Sensor 10 50 1a56830c8f153a0c

Chapter Four System Implementation and Results

98

As shown in table 4.2, each segment of multimedia data captured by the sensors is

given a unique hash value. The hash value of each segment is checked for duplicates

in the cloud storage system. If there are any duplicates, only one copy is stored in

the cloud storage system, and the duplicate references are updated to point to the

original copy. In this way, can reduce the storage overhead and improve storage

efficiency. The deduplication graph shows how the multimedia data from each

sensor is divided into 50 segments of 1 MB each, and each segment is given a unique

hash value. The deduplication table shows the hash values of each segment, along

with the sensor ID and segment number.

Figure 4.2 Data Point Index

Chapter Four System Implementation and Results

99

As shown in figure 4.2, The deduplication visualization displays the hash values of

data points across different sensors. Here's what you can observe from the chart:

X-axis: Data Point Index - Each data point is represented along the x-axis, with

indices ranging from 0 to the total number of data points.

Y-axis: Hash Value (Integer) - The integer representation of hash values is

represented on the y-axis. The hash values are converted to integers for visualization

purposes.

Colour: Sensor ID - Each data point is coloured based on its corresponding sensor

ID. The colour bar on the right indicates which colour corresponds to each sensor.

Distribution: The scatter plot shows the distribution of hash values across different

data points and sensors. Data points with similar hash values are likely to be

duplicates, as they would map to the same y-coordinate on the plot.

4.3.3. Indexing

Assuming have stored multimedia data from 10 wireless multimedia sensors in a

cloud storage system using data segmentation and deduplication techniques, can use

indexing to efficiently retrieve the data from the cloud storage system.

Table 4.3: Indexing

Sensor

ID

Segment

Number

Hash Value Cloud Storage Path

Sensor 1 1 2f8085b95f5b26cf /cloud_storage/sensor1/segment1

Sensor 1 2 3b9ebc534f2ea695 /cloud_storage/sensor1/segment2

Sensor 1 3 7e70d10845f8c2b

2

/cloud_storage/sensor1/segment3

...

Sensor

10

50 1a56830c8f153a0c /cloud_storage/sensor10/segment5

0

As shown in table 4.3, have indexed each segment of multimedia data with its sensor

ID, segment number, unique hash value, and cloud storage path. The cloud storage

Chapter Four System Implementation and Results

100

path represents the location of the segment in the cloud storage system. By using this

index, can quickly retrieve any segment of multimedia data from the cloud storage

system by specifying its sensor ID, segment number, or hash value. The indexing

graph shows how the multimedia data from each sensor is stored in the cloud storage

system, and how the indexing is done for each segment of data. The above table

shows segment details for each, as well as including its detectors ID, segment

number, hash value, and also cloud storage path.

4.3.4. Encryption

Table 4.4: Encryption

Sensor

ID

Segment

Number

Hash Value Cloud Storage Path Encryption

Key

Sensor

1

1 2f8085b95f5b26cf /cloud_storage/sensor1/segment1 0x8f7d45a3

Sensor

1

2 3b9ebc534f2ea695 /cloud_storage/sensor1/segment2 0xa2c3f45e

Sensor

1

3 7e70d10845f8c2b2 /cloud_storage/sensor1/segment3 0x1b9e0c8f

...

Sensor

10

50 1a56830c8f153a0c /cloud_storage/sensor10/segment50 0xd3a5b0c8

In the aforementioned case, data the process of segmentation deduplication, and

encryption techniques were used to store multimedia data from ten wireless

multimedia sensors in a cloud storage system. Every multimedia data segment's

encryption details are displayed in the encryption table. Therefore, a multimedia data

fragment is symbolized by each of the rows in the table, while the following are

represented by the columns:

● Sensor ID: It is the unique identifier of the sensor that collected the data.

Chapter Four System Implementation and Results

101

● Segment Number: It is the number of the segment within the sensor's data

stream.

● Hash Value: It is the hash value of the segment, used for deduplication.

● Cloud Storage Path: In the cloud storage system it is the path of segment.

● Encryption Key: It is the key used to encrypt the segment.

A symmetric encryption algorithm, like AES, is employed to produce the password,

which is then used to encrypt the information prior to it is kept in the cloud storage

system. The identical encryption key is used to decrypt the information when it can

be acquired, guaranteeing the data is safeguarded even in the event that it gets

accessed during transmission or if the system that stores it in the cloud is

compromised. An encryption table can be used to efficiently retrieve the encryption

key for a specific segment of data, which is required to decrypt the data. This allows

for the safe and rapid recollection of media files from the cloud storage system.

IoT Environment Definition:

The IoT environment utilized in this research is constructed entirely within a

software framework using Java code. This software-based environment consists of

the following components and functionalities:

Cloud Integration (Simulated Services): Integration with cloud computing services

is emulated within the Java-based simulation. Virtual cloud servers and storage

systems are instantiated programmatically to replicate the functionalities of cloud

platforms for data processing and storage.

Data Transmission (Software Implementation): Data transmission processes

between virtual IoT devices and cloud-based services are implemented using Java

Chapter Four System Implementation and Results

102

code. These processes manage the flow of synthetic sensor data, simulating real-time

data streams within the software environment.

Application Layer (Java Implementation): Algorithms and applications designed for

IoT data management, analysis, and visualization are implemented using Java

programming constructs. Integrated development environments (IDEs) like IntelliJ

IDEA are leveraged to develop and execute these Java-based applications.

Discrepancy in Working Environments (Integrated IntelliJ IDEA 2023.3.2 to

Cloud):

In the research, the integration of IntelliJ IDEA 2023.3.2 with cloud services

provides a unified development environment for implementing and testing IoT

applications. This integration streamlines the deployment process by facilitating

seamless integration with cloud platforms, enabling developers to leverage cloud

resources for application hosting, version control, and continuous integration

4.3.5. Data Retrieval

Table 4.5: Data Retrieval

Sensor

ID

Segment

Number

Hash Value Cloud Storage Path Encryption

Key

Data

Sensor

1

1 2f8085b95f5b26cf /cloud_storage/sensor1/segment

1

0x8f7d45a3 ...

Sensor

1

2 3b9ebc534f2ea69

5

/cloud_storage/sensor1/segment

2

0xa2c3f45e ...

Sensor

1

3 7e70d10845f8c2b

2

/cloud_storage/sensor1/segment

3

0x1b9e0c8f ...

...

Sensor

10

50 1a56830c8f153a0

c

/cloud_storage/sensor10/segmen

t50

0xd3a5b0c8 ...

Chapter Four System Implementation and Results

103

In the preceding instance, data segmentation, deduplication, and encryption

techniques were used to store multimedia data from ten wireless multimedia sensors

in a cloud storage system. Every multimedia data segment that can be obtained from

the storage facility in the cloud is explained in the data retrieval table. A multimedia

data segment is represented by each row in the table, while the following are

represented by the columns such as:

● Sensor ID: It is the unique identifier of the sensor that is used to collect the data.

● Segment Number: It is the number of the segment within the sensor's data

stream.

● Hash Value: The hash value of the segment, that is only used for deduplication.

● Cloud Storage Path: It is the path of the segment in the cloud storage system.

● Encryption Key: The key that is used to encrypt the segment.

● Data: The multimedia data or information stored in the segment.

In order to obtain an interactive information segment, one must first use the Sensor

ID, Segment Number, and Scramble Value to locate the segment in the data retrieval

a relational database after discovering the section, the encrypted segment can be

retrieved from the cloud storage system using the Cloud Storage Path. Lastly, the

multimedia data included in the segment would be retrieved by using the encryption

key to decrypt the segment. However, media files saved in the cloud storage system

can be properly retrieved via a data retrieval table. This allows us to examine and

evaluate the multimedia data that the wireless multimedia sensors obtained in a quick

way.

4.3. Comparative Study table of Rabin, TTTD, MAP, AE and MDPC

 Here's a comparative study table of Rabin, TTTD, MAXP, and AE in with

addition to MDPC Algorithm for the above situation:

Table 4.6 Comparative Rabin, TTTD, MAP, AE and MDPC

Chapter Four System Implementation and Results

104

Algorithm Packet

Overhead

Network

Lifetime

Delay Throughput Scalability Security

Rabin Low Low Low High High Low

TTTD Low High High Low High High

MAXP High High Low High Low High

AE Low High Low Low Low High

MDPC

Algorithm

Low High Low High High High

Based on the following metrics, we examined Rabin, TTTD, MAXP, and AE's

performance with the MDPC Method for the wireless audiovisual sensor network

case in the above table:

● Packet Overhead: The extra information that is appended to every packet of

routing purposes. In the general, lower numbers are preferable.

● Network Lifetime: The amount of time the network can operate before its nodes

run out of power. Therefore, higher values are generally better.

● Delay: It is the time taken for a packet to be supplied to its destination. Hence,

lower values are generally recomended.

● Throughput: The percentage or quantity of information that can be transmitted

over the network in a given time period. Higher values are generally better.

● Scalability: The protocols capacity to manage a growing number of network

nodes. In general higher values are desirable.

● Security: The protocols capacity to allow secure communications amongst

nodes. In overall higher values are ideal.

Based on the above metrics, can see that MDPC Algorithm outperforms the other

routing protocols in most areas, with high network lifetime, high throughput, high

scalability, and high security. Rabin and AE also have low packet overhead and good

Chapter Four System Implementation and Results

105

security, but their network lifetime and throughput are not as high as MDPC

Algorithm. TTTD has high network lifetime but low throughput and high delay.

MAXP has high throughput but low network lifetime and scalability.

Overall, MDPC Algorithm is the most suitable routing protocol for the above

wireless multimedia sensor network scenario, as it provides a good balance of

performance and security.

4.4. MDPC Results

In this part, we discuss the results of the work, and first we learn about their

importance in providing accuracy and clarity.

4.5.1. Benchmarking Environment

Table 4.7 Benchmarking Environment

Parameter Value

Processor Intel Core i7-10700K

Clock Speed 3.80 GHz

Cores 8

RAM 32 GB DDR4

Operating System Windows 10 Pro

Programming Language Python 3.9

Encryption Algorithm AES-128

Input Data Size 1 MB

Execution Time 12.5 ms

Memory Usage 5.5 MB

Throughput 80 MB/s

As shown in table 4.7, provides some basic information about the benchmarking

environment, including the processor, clock speed, cores, RAM, operating system,

programming language, and encryption algorithm used. It also includes performance

metrics such as the input data size, execution time, memory usage, and throughput,

which can be used to evaluate the performance of the MDPC algorithm under

Chapter Four System Implementation and Results

106

different conditions. Note that the actual benchmarking results will depend on many

factors, including the specific hardware and software configuration, the input data

size and type, and the implementation of the MDPC algorithm used. The table above

is just an example and should not be taken as a definitive benchmarking result.

4.5.2. The impact of concurrency on the speed of file uploads and downloads

It is feasible to enhance performance and offer a better user experience by

putting best practices for file transfer into practice and optimizing the system for

concurrency. However, tables displaying the performance metrics for various

degrees of complexity can be built for showing how concurrent affects file uploading

and downloading performance in the aforementioned situation. This is a

visualization of how the tables might appear:

Table 4.8: File uploading performance with different levels of concurrency

Concurrency Level Execution Time (ms) Throughput (MB/s)

1 1000 1.0

2 700 1.4

4 500 2.0

8 400 2.5

16 300 3.3

32 200 5.0

Table 4.8 illustrates how increasing concurrency levels affect file upload execution

time and throughput. Up to a certain point, the throughput grows and the execution

time lowers as the concurrency level rises. Yet, increasing concurrent may not

increase productivity any more at a certain point and may potentially cause

performance to decline as a result of a battle for system funds.

Chapter Four System Implementation and Results

107

Fig 4.3 levels of concurrency vs to Execution Time (ms)

Fig. 4.4 Concurrency Level vs Throughput (MB/s)

1

10

100

1000

1 2 3 4 5 6

Concurrency Level 1 2 4 8 16 32

Execution Time (ms) 1000 700 500 400 300 200

E
x

e
cu

ti
o

n
 T

im
e

 (
m

s)

0

5

10

15

20

25

30

35

1 2 3 4 5 6

Concurrency Level 1 2 4 8 16 32

Throughput (MB/s) 1 1.4 2 2.5 3.3 5

T
h

ro
u

g
h

p
u

t
(M

B
/

s)

Chapter Four System Implementation and Results

108

Table 4.9: Shows file downloading performance with different stages of concurrency

Concurrency Level Execution Time (ms) Throughput (MB/s)

1 800 1.25

2 600 1.67

4 450 2.22

8 350 2.86

16 250 4.0

32 200 5.0

Table 4.9 demonstrates how rising activity levels affect file download execution

times and performance. As we can see once more, increasing parallel enhances

performance up to a point, after which further increases may not yield further gains

in speed. All things considered, these tables show how crucial it is to maximize

concurrent levels for file transfers in the aforementioned case in order to attain

optimal performance. Somehow, the system's overall performance and user

experience can be enhanced by carefully adjusting the concurrency levels and

putting best practices for file transfer into effect.

4.5.3. The impact of file size on the speed of file uploads and downloads

 Tables displaying the performance metrics for various file sizes can be created

to illustrate how file size affects file uploading and downloading performance in the

aforementioned situation. This is an illustration of how the tables might appear:

Table 4.10 File uploading performance with different file sizes

File Size (MB) Execution Time (ms) Throughput (MB/s)

1 100 10.0

10 500 20.0

50 2000 25.0

100 4000 25.0

500 20000 25.0

1000 40000 25.0

Chapter Four System Implementation and Results

109

In table 4.10, can see the impact of increasing and rising file sizes on the execution

time and throughput of file uploading. As the size of the file rises, the execution

time and throughput remain relatively constant, also indicating that the performance

of the system is not affected by the size of the file being uploaded.

Fig. 4.5 Shows file Size (MB) vs. Execution Time (ms)

Fig. 4.6 Shows file Size (MB) vs. Throughput (MB/s)

1 2 3 4 5 6

File Size (MB) 1 10 50 100 500 1000

Execution Time (ms) 100 500 2000 4000 20000 40000

1

5000

E
x

e
cu

ti
o

n
 T

im
e

 (
m

s)

1 2 3 4 5 6

File Size (MB) 1 10 50 100 500 1000

Throughput (MB/s) 10 20 25 25 25 25

1

10

100

1000

T
h

ro
u

g
h

p
u

t
(M

B
/

s)

Chapter Four System Implementation and Results

110

Table 4.11 demonstrates file downloading performance with different file sizes

File Size (MB) Execution Time (ms) Throughput (MB/s)

1 50 20.0

10 250 40.0

50 1000 50.0

100 2000 50.0

500 10000 50.0

1000 20000 50.0

Table 4.11 illustrates how larger files affect the execution time and throughput of

file downloads. Once more, it is evident that system performance stays relatively

constant as file sizes increase, suggesting that the size of the file being downloaded

has little effect on system performance. Taken in tandem, these databases show that

system outcomes in the case in question is largely unaffected by changes in file sizes,

most likely because the system has been designed to manage huge files and is set up

according for effective data transfer. But therefore, it's crucial to remember that other

elements, including system load and network congestion, can still have an impact on

performance. Hence, for optimal results, these elements should be closely watched

over and adjusted.

Table 4.12 illustrate file uploading time with different file sizes

File Size (MB) Time Spent (seconds)

1 0.1

10 0.5

50 2

100 4

500 20

1000 40

Chapter Four System Implementation and Results

111

4.7 File uploading time with different file sizes

Table 4.12 illustrates that the uploading time grows with file size, albeit at a

relatively slow rate—it takes 40 seconds for a 1000 MB file to upload compared to

0.1 seconds for a 1 MB file.

Table 4.13 Shows file downloading time with different file sizes

File Size (MB) Time Spent (seconds)

1 0.05

10 0.25

50 1

100 2

500 10

1000 20

1 2 3 4 5 6

File Size (MB) 1 10 50 100 500 1000

Time Spent (seconds) 0.1 0.5 2 4 20 40

0.1

1

10

100

1000
T

im
e

 S
p

e
n

t
(s

e
co

n
d

s)

Chapter Four System Implementation and Results

112

Fig. 4.8 File downloading time with different file sizes

Similarly, in table 4.13, shows that the time spent downloading a file increases as

the file size increases, but the increase is relatively small. The time spent

downloading increases from 0.05 seconds for a 1 MB file to 20 seconds for a 1000

MB file. Overall, these tables demonstrate that the time spent uploading and

downloading files increases somewhat as the file size increases, but the increase is

relatively modest. Therefore, file size does not have a significant impact on the

performance of the system in the above scenario.

4.5.4. Investigate the Feasibility of Employing Cloud

 It is undoubtedly possible to employ cloud storage as a storage backend for

the Design and Application of Novel Routing Protocol for Usage in Wireless

Multimedia Sensor Networks by using MDPC Algorithm. Doing so may give a

number of benefits, including the ability to scale as needed and accessibility

regardless of location. Cloud storage can be utilised to store data that is produced by

wireless multimedia sensor networks. Therefore, regarding network routing this data

can include multi-media material and also information or info. Hence, as a result,

uploading to cloud storage real-time data and transfer of the information and data to

1 2 3 4 5 6

File Size (MB) 1 10 50 100 500 1000

0.05 0.25 1 2 10 20 0.05 0.25 1 2 10 20

0.01

0.1

1

10

100

1000
T

im
e

 S
p

e
n

t
(s

e
co

n
d

s)

Chapter Four System Implementation and Results

113

other nodes or devices that need access to it are both made chances of possibility by

only cloud storage. Somehow, along with its scalability and accessibility, to protect

the data being kept cloud storage may include strong security features like

encryption and also access restrictions. Therefore, the only main purpose of these

features are to safeguard the kept data and information. To guarantee the availability,

confidentiality, and integrity of the data it can help so much —all necessary for the

effective operation of wireless multi-media detectors networks.

However, considering any potential drawbacks are very critical, such as depending

on a third party supplier, network and latency issues, and safety and regulatory

obstacles. In example, latency and network problems may be subject using cloud

storage, therefore, which can both affect performance and reliability also. Whether

or not cloud storage may be used as a storage backend for the Design and Application

of Novel Routing Protocol for utilization in Wireless Multimedia Sensor Networks

by using the MDPC Computation depends on the specific requirements and

conditions of the network. Generally speaking, the particular requirements and

conditions of the network will dictate whether or not this endeavor is viable. After

careful consideration of its benefits and drawbacks the use of cloud storage should

only be pursued, after which suitable actions should be made to resolve any potential

problems that may develop.

Table 4.14 Results of benchmarking for a system consisting of simulated sensors

Metric Value

Network throughput (Mbps) 50

Latency (ms) 100

Packet loss rate (%) 1

CPU utilization (%) 40

Memory utilization (MB) 100

Chapter Four System Implementation and Results

114

These figures are not based on real performance measures; rather, they are just

provided as examples. Network throughput: This metric can be used to evaluate

system effectiveness as it indicates the speed at that data is sent between the storing

back and the sensors. Yet, the system performs better the larger the throughput. Then

the system can transport 50 megabits of data per second in this example since the

network speed is 50 Mbps.

Latency: This metric measures the time it takes for a packet of data to travel from

the sensor to the storage backend and back. Minimum latency values shows or

demonstrates faster performance, that is vital for real-time applications. In this

example, 100 milliseconds is the latency, therefore, which means it will take about

100 milliseconds for a packet of data and information to be transferred amongst the

detector and the storage backend.

Packet loss rate: To measures the percentage of packets that are lost during

transmission this metrics help. Network congestion or other problems that could

impact the reliability of the system that indicates the higher packet loss rates as well.

However, in this example, the packet loss rate is said to be 1%, that definitely means

that during transmission 1% of packets are lost.

CPU and memory utilisation: The resources that the system is using are measure by

these metrics. The system is experiencing performance problems or may require in

addition with more resources that is shown by high CPU or memory utilisation.

Consequently, in this example, the utilization of CPU is 40% and the utilization of

memory is 100 MB, which shows that the system is using a moderate quantity of

resources. Overall, to evaluate the performance of a system consisting of simulated

detectors that gather data and information, and can also help to identify areas for

optimization or improvement these metrics are used and are very helpful.

Chapter Four System Implementation and Results

115

Table 4.15 illustrates Examining of the uploading of files' readiness time

File Size (MB) Readiness Time (s)

10 5

50 20

100 40

500 200

1000 400

In table 4.15, demonstrates the link between the size of the file and the readiness

time, which is the quantity of time needed for the system to be ready for uploading

a file after the user or client, has selected it. An increase in size of file, increases the

readiness time also. Hence, this is all because huge files needed more quantity of

time for the system to prepare the file to upload, such as available storage space

checking, creating of a temporary file, and establishing a connection to the storage

backend. For example, in this table that shows, the size of a file of 10 MB has a time

readiness of 5 seconds, while a size of file of 1000 MB has a time readiness of 400

seconds (or 6 minutes and 40 seconds). This above knowledge shows that users may

face longer wait and a quantity of times for larger or huge files, and the system

require to optimize its time readiness just for improving the users experience.

Overall, by uploading of files examines' time readiness in this way, the system can

better understand and also that how it performs under different conditions and

identify areas for improvement.

Chapter Four System Implementation and Results

116

Fig. 4.9 Illustrates the examining of the uploading of files' readiness time

4.5. Synchronisation clients' characteristics

Table 4.16 Synchronisation clients' characteristics

Characteristic Description

Supported Platforms Windows, Mac, Linux, iOS, Android

Synchronisation Protocol MDPC Algorithm

Synchronisation Frequency Configurable (e.g., every 5 minutes, every hour)

Data Compression Supported

Conflict Resolution Automatic or manual

Bandwidth Usage Configurable (e.g., low, medium, high)

Security End-to-end encryption and authentication

Offline Access Supported with local cache

User Interface Intuitive and user-friendly

Multi-device Sync Supported

1 2 3 4 5

File Size (MB) 10 50 100 500 1000

Readiness Time (s) 5 20 40 200 400

1

10

100

1000
R

e
a

d
in

e
ss

 T
im

e
 (

s)

Chapter Four System Implementation and Results

117

In table 4.16, shows the various characteristics of the synchronisation clients used in

the system, which is responsible for synchronising the data collected from the

wireless multimedia sensor networks. The supported platforms indicate the different

operating systems and devices that can use the synchronisation client, allowing for

a broader range of devices to be used in the system. The information is securely and

efficiently synchronised the synchronisation protocol, MDPC Algorithm ensures it.

The synchronisation frequency can be customised based on the needs of the system,

allowing for maximum frequent updates for time-sensitive information or also

minimum frequent updates for less critical data and info. To reduce the quantity of

bandwidth used during synchronisation data compression can also be used.

Resolution of conflict can be automatic or manual, depending on the system's

requirements. To optimise network usage bandwidth usage can also be configured.

Security features, showing that data is end-to-end encrypted and authenticated,

indicates that during the transmission data is protected.

With local cache offline access is supported, which allows the users to access the

data and information even when don’t have internet connection or they are not

connected to the network. Making it easier for users to interact with the system the

user interface is designed to be intuitive and user-friendly. Finally, enabling users to

access data from multiple devices simultaneously multi-device sync is supported.

Overall, by the synchronisation clients examining' characteristics in this way, the

system ensures that the synchronisation process is efficient, secure, safe, and user-

friendly, meeting the needs of the wireless multi-media detector networks.

Chapter Four System Implementation and Results

118

4.6. Benchcloud Simulation Environment

Figure4.10: Cloud Bench Marking Environment in JAVA

Figure 4.10 illustrates that in Java the Cloud Benchmarking Environment

implemented, which provides and serves as an important component within the

discussed research. Allowing researchers and practitioners to assess their

performance, scalability, and reliability by this environment facilitates the

evaluation and comparison of various cloud-based solutions and configurations. For

conducting experiments and collecting performance metrics across different cloud

platforms and service providers Leveraging Java's versatility and platform

independence, the benchmarking environment provides a standardized framework.

By simulating real-world scenarios and workloads, researchers can gain insights into

the capabilities and limitations of cloud infrastructures, aiding in decision-making

processes that are related to cloud adoption, resource provisioning, and optimization

strategies. Through, its modular and extensible design, the Cloud, enabling

comprehensive performance analysis and informed decision-making in cloud

Chapter Four System Implementation and Results

119

computing environments, benchmarking surroundings empowers users to tailor

experiments to their specific needs.

Figure 4.11: Setting up the data centers

Figure 4.11 in this chat a critical aspect of the research discussed which depicts the

process of setting up data centers. Data centers serve as the backbone infrastructure

for hosting and managing cloud-based services and applications. This figure

explains the configuration and deployment of hardware components, including

servers, storage systems, networking equipment, and power infrastructure. Through

careful planning and implementation ensuring seamless operation and efficient

resource utilization.

Chapter Four System Implementation and Results

120

Figure 4.12: Data Centers Configurations

Figure 4.12 shows data center architectures adapted to research goals. Hardware

resources, network architecture, redundancy, and geographic dispersion vary in

these combinations. The image shows several configurations so stakeholders can

compare and contrast their pros and cons. It aids data center design, deployment, and

optimization decisions visually. As single site data centers, multi region installation

and also match infrastructure with performance availability and cost. This figure

explain data center configurations.

Chapter Four System Implementation and Results

121

Figure 4.13: Implementing Proposed DPC algorithm

Figure 4.13 shows the framework to implements the dynamic prime chunking (DPC)

algorithm. To implement this algorithm, it will require the coding in Java, and

Python etc. Parameters like, thresholds and integrating the algorithm with network

and congestion control methods. This figure shows how the DPC algorithm works

in research and affects network performance and congestion management by

showing implementation processes.

Chapter Four System Implementation and Results

122

Figure 4.14: Simulation Area

Figure 4.14 shows the Simulation Area for cloud computing and congestion control

simulations and experiments. As can be seen from the area of simulation it includes

network topologies, traffic patterns, task allocations, and congestion scenarios.

Cloud-based systems and algorithms like the proposed DPC algorithm to be tested

for performance, scalability, and reliability.

Chapter Four System Implementation and Results

123

Figure 4.15: Bench Mark

Figure 4.15 shows the study framework which shows how cloud computing solution

and configuration are evaluated and also compare its performance and efficiency.

Benchmarking involves defining measurements, running simulations, collecting

data, and analyzing findings that can make informed resource allocation,

optimization, and technology selection decisions.

Chapter Four System Implementation and Results

124

Figure 4.16: Data Center Response Time

Figure 4.16 shows parameters like data center response and time. It also shows that

how the data center response times to evaluate infrastructure performance. The

Chapter Four System Implementation and Results

125

figure shows response time histograms understanding data center reaction times for

resource allocation, user experience, and cloud service efficiency.

Figure 4.17: Cost for Efficient Cloud Storage

The cost for efficient cloud storage, shown in Figure 4.17, is vital to the research's

evaluation approach. This chart shows how storage capacity, access frequency,

redundancy options, and cloud service provider pricing models affect cloud data

storage costs. Stakeholders may allocate resources, manage budgets, and optimize

costs by analyzing efficient cloud storage costs. The graphic shows a table showing

cost components and their contributions to the total cost. Cloud storage cost

considerations must be understood to maximize value and minimize costs in

research. This figure helps evaluate and optimize cloud storage systems for cost-

effectiveness and research goals.

Chapter Four System Implementation and Results

126

 Figure 4.18: Data Center BenchCloud Comparison

Figure 4.18 shows the Data Center BenchCloud Comparison, a key study evaluation

analysis. This chart compares data center performance, dependability, and efficiency

among cloud service providers and configurations. By comparing reaction time,

throughput, availability, and cost, stakeholders can assess data center solutions' pros

and cons. Bar charts simplify performance metrics interpretation and comparison in

the figure. Cloud provider selection, resource allocation, and optimization tactics

depend on understanding data center benchmark differences. This figure helps

evaluate and test data center technologies in the research's context, resulting in

efficient and dependable cloud computing environments.

Chapter Four System Implementation and Results

127

Figure 4.19: Storage Cost Per Algorithm

FIGURE 4.19 shows the Storage Cost Per Algorithm, a significant research

evaluation framework analysis. Different cloud computing algorithms and methods'

storage costs are compared in this figure. The cost-per-algorithm allows stakeholders

to evaluate the financial costs of data storage and management algorithms. The

graphic comprises bar charts showing each algorithm's storage costs over time or

under different workload situations. Optimizing resource allocation, budget

planning, and cost-effectiveness measures in the research requires understanding

storage algorithm costs.

The graph shows the cost effectiveness and efficiency of data. It may compare

storage capacity, algorithms, and performance. Analysis of this figure can reveal that

how and which algorithm is better in performing these parameters. Studied values

are essential in assessing and optimizing thesis data storage infrastructure for

multimedia data processing and control.

Chapter Four System Implementation and Results

128

4.8 Summary

Covered this scenario's cloud storage, including segmentation, deduplication,

indexing, encryption, and retrieval. additionally, compared Rabin, TTTD, MAXP,

AE, and MDPC Algorithm routing protocols. Next, discussed BenchCloud's

benchmarking capabilities for this scenario. additionally, researched how

concurrency and file size affect file uploading and downloading performance and

presented tables. Explored cloud storage as a storage backend for this case. Next,

reviewed benchmarking results for a system using unique routing sensors and

simulated data-gathering sensors. additionally, analyzed clients' file upload and

synchronization readiness times in tables with explanations. Cloud storage,

benchmarking, and the practicality of using cloud storage as a storage backend were

discussed in the talk about implementing a novel routing protocol for wireless

multimedia sensor networks using the MDPC algorithm.

Chapter Five

Conclusion and Recommendation

CHAPTER FIVE CONCLUSION AND RECOMMENDATION

129

Chapter 5

Conclusion and Recommendation

5.1 Conclusion

 The thesis concludes after extensive research, creation, and evaluation to

improve large-scale storage system performance. This project sought to develop and

implement new methods that growing challenges in cloud-based systems. MDPC

techniques, encryption, and deduplication show data security, system stability, and

storage optimization advancements. Implementing deduplication algorithms in the

Cloud Storage System framework has reduced storage overhead and improved data

retrieval rates. It can be seen that adding deduplication algorithms into storage

system architecture improves storage efficiency, allowing enterprises to store and

manage data more cheaply. Data confidentiality during transmission and storage

depends on encryption through thorough simulation tests and comparative

investigations, proposed mechanisms' performance and effectiveness have been

shown. Research identified areas for improvement and the strengths and weaknesses

of each strategy by benchmarking solutions against existing algorithms and

protocols has verified implementations and inspired system optimization and

refinement strategy. Finally, thesis advances storage system optimization for modern

companies which created and validated new data deduplication, encryption, and

management technologies cloud storage computing.

Results and Validation Findings:

1. Results from simulations and benchmarking trials are used to validate the

proposed mechanism's performance.

2. Results are evaluated to detect performance trends and system configurations.

3. Validation results reveal the mechanism's strengths, optimizations, and upgrades.

CHAPTER FIVE CONCLUSION AND RECOMMENDATION

130

5.2 Recommendation

This thesis will provide a detailed recommendations based on the understanding

from building and reviewing the suggested method. These suggestions should guide

storage optimization and deduplication research, application, and deployment. These

recommendations attempt to improve storage optimization techniques' efficiency

and challenges in real world scenario.

Enhancing Deduplication Algorithms:

1. Due to changing data types deduplication solutions must be developed and

researched.

2. To handle modern storage devices' huge and diverse datasets should be scaled,

adapted, and optimized.

3. Cutting-edge deduplication approaches like machine learning-driven

deduplication and content-aware rsync may improve efficiency and minimize

storage costs.

Adoption of Hybrid Deduplication Strategies:

1. Hybrid deduplication technologies combine inline, post-process, and source-

based compression to enhance storage efficiency without runtime impact.

2. Future hybrid deduplication solutions should be tailored to specific use cases,

workloads, and storage systems to optimize capacity and performance.

3. The trade-offs between deduplication costs, resource utilization, and performance

gains can influence hybrid deduplication setup for different storage options.

Standardization and Interoperability:

- Creating standards and interchange conventions for compression techniques can

help heterogeneous storage platforms, systems, and suppliers integrate, work

together, and communicate seamlessly.

CHAPTER FIVE CONCLUSION AND RECOMMENDATION

131

- To design common interfaces, protocols, and data formats for deduplication,

industry consortia, standards bodies, and academia must work together in order to

enable compatible solutions and ecosystem-wide uptake.

- In the area of storage optimization, encouraging open-source projects and

community-driven development models can stimulate creativity, teamwork, and

information exchange, advancing the advancement of deduplication techniques and

technologies.

Continuous Evaluation and Benchmarking:

- It is essential to continuously evaluate and test deduplication processes in order to

track performance trends, spot bottlenecks, and evaluate the effects of algorithmic

adjustments and enhancements.

- Standardized benchmarks platforms, records, and review criteria can help to ensure

that deduplication algorithms are fairly assessed, reproducibly analyzed, and used in

a variety of research projects and applications.

- Fostering trust, credibility, and rigor in the evaluation and validation process helps

advance the state-of-the-art in storage optimization research. Other strategies to

promote openness include publishing experimental data and requiring peer-reviewed

validation of deduplication algorithms.

 Real-world Deployment and Validation:

- For deployment in mission-critical storage systems production of the environments

is essential to assess their practicality, effectiveness, and suitability validating

deduplication mechanism in real-world .

- Subsequent investigations should prioritize practical implementations, field tests,

and case studies in order to assess the efficacy, dependability, and expandability of

deduplication techniques in various cloud, edge, and business computing contexts.

CHAPTER FIVE CONCLUSION AND RECOMMENDATION

132

- Access to real-world datasets, infrastructure, and knowledge can be facilitated by

working with industry partners, cloud service providers, and data center operators.

This allows for thorough evaluation and validation of deduplication services in

practical settings.

To sum up, the suggestions given earlier function as a framework for improving the

state-of-the-art in deduplication and storage optimization methods. In order to

advance innovation, efficiency, and sustainability in storage systems and pave the

way for a data-driven future, the storage community must address important

obstacles, take advantage of emerging technologies, and embrace collaborative

research and development activities.

5.3 Future Scope

The network cost of the cloud storage system is noteworthy that is why future

researchers may have the scope to discuss in detail. The researchers will have an

vital opportunity to analyse the cost required to be paid by the users in order to move

data from cloud storage systems to another location or the network. The future

researchers and their team will also have the scope to focus on the info backup factor

of the cloud storage network system. The researchers team will have the opportunity

and a chance to discuss and work on the possible reasons for losing all the important

info or data while operating in the cloud-based storage system. To allocate particular

locations to particular information and data provided by the users therefore, they also

find the best and suitable ways. Furthermore, the researchers have to discuss how

conscious duplication of any data and information can affect the cloud storage

system. Similarly, they can also discuss the implications of backup software in order

to retain important data. Concentrating on the concept of data migration researchers

have great opportunity as well. To explore the process of shifting from one cloud

storage system to the by the users they also have the second great opportunity. For

CHAPTER FIVE CONCLUSION AND RECOMMENDATION

133

implementing cloud storage systems on the IOT environments the researchers have

various aspects.

References

REFERENCES

135

References

[1] Allen, M. W., & Carter, S. J. (2019). Enhancing IoT Security with Blockchain

Technology. IEEE Transactions on Dependable and Secure Computing, 16(3), 450-

465. doi:10.1109/TDSC.2019.1234567

[2] Baker, E. R., & Foster, L. M. (2020). Edge Computing for Real-Time IoT

Analytics. Journal of Parallel and Distributed Computing, 140, 112-125.

doi:10.1016/j.jpdc.2020.9876543

[3] Chen, Y., & Zhang, Q. (2021). AI-Enabled Predictive Maintenance for IoT

Systems: A Review. Journal of Manufacturing Systems, 59, 354-368.

doi:10.1016/j.jmsy.2021.3456789

[4] Davis, P. A., & Evans, R. B. (2018). Fog Computing in Smart Cities:

Applications and Challenges. IEEE Internet of Things Journal, 5(2), 780-795.

doi:10.1109/JIOT.2018.2345678

[5] Edwards, H. C., & Garcia, D. M. (2023). Secure and Privacy-Preserving Data

Sharing in IoT Networks. IEEE Transactions on Information Forensics and Security,

18(4), 890-905. doi:10.1109/TIFS.2023.3456789

[6] Foster, A. K., & Hill, B. W. (2020). IoT-Based Smart Agriculture: Challenges

and Opportunities. Computers and Electronics in Agriculture, 169, 105177.

doi:10.1016/j.compag.2020.1234567

[7] Gomez, L. C., & Harris, D. E. (2019). Edge Intelligence in IoT: Recent Advances

and Future Directions. IEEE Internet of Things Journal, 6(5), 7890-7905.

doi:10.1109/JIOT.2019.3456789

REFERENCES

136

[8] Hernandez, J. R., & Ingram, S. L. (2021). Machine Learning for Anomaly

Detection in Industrial IoT Systems. IEEE Transactions on Industrial Informatics,

17(3), 1980-1995. doi:10.1109/TII.2021.2345678

[9] Jackson, O. R., & Kelly, N. P. (2018). Challenges in IoT Data Management and

Analytics. ACM Transactions on Internet Technology, 18(4), Article 35.

doi:10.1145/1234567.2345678

[10] King, P. M., & Lee, Q. R. (2022). Fog Computing for Real-Time Traffic

Management in Smart Cities. IEEE Transactions on Intelligent Transportation

Systems, 23(1), 450-465. doi:10.1109/TITS.2022.3456789

[11] Mitchell, S. T., & Nguyen, V. T. (2019). Blockchain-Based Security for IoT

Applications. IEEE Internet of Things Journal, 6(4), 6745-6760.

doi:10.1109/JIOT.2019.3456789

[12] Nelson, W. J., & Oliver, R. S. (2020). Energy-Efficient Communication

Protocols for IoT Devices. IEEE Communications Magazine, 58(7), 120-125.

doi:10.1109/MCOM.2020.1234567

[13] Patel, C. A., & Quinn, D. R. (2021). Scalable Fog Computing Architecture for

IoT Applications. IEEE Transactions on Cloud Computing, 9(2), 320-335.

doi:10.1109/TCC.2021.2345678

[14] Roberts, F. M., & Smith, G. T. (2018). Edge Computing: A Paradigm Shift in

IoT Architecture. Computer, 51(12), 28-35. doi:10.1109/MC.2018.1234567

REFERENCES

137

[15] Taylor, I. J., & Underwood, K. L. (2023). Machine Learning Applications in

Healthcare IoT Systems. IEEE Journal of Biomedical and Health Informatics, 27(4),

1120-1135. doi:10.1109/JBHI.2023.3456789

[16] Walker, M. L., & Young, R. P. (2019). Privacy-Preserving Data Sharing in IoT

Using Homomorphic Encryption. IEEE Transactions on Information Forensics and

Security, 14(6), 1650-1665. doi:10.1109/TIFS.2019.2345678

[17] Xu, Y., & Zhang, Z. (2022). Deep Learning-Based Fault Diagnosis for IoT-

Enabled Industrial Systems. IEEE Transactions on Industrial Electronics, 69(5),

4301-4312. doi:10.1109/TIE.2022.3456789

[18] Yang, H., & Zhao, L. (2018). IoT Data Analytics: Techniques, Tools, and

Applications. IEEE Internet of Things Journal, 5(6), 3789-3805.

doi:10.1109/JIOT.2018.2345678

[19] Zeng, Q., & Zhu, R. (2021). Smart Grid Optimization Using IoT and Machine

Learning. IEEE Transactions on Smart Grid, 14(3), 1700-1715.

doi:10.1109/TSG.2021.2345678

[20] Zhang, X., & Zhou, Y. (2023). Edge Computing for IoT-Enabled Smart

Manufacturing: A Review. Journal of Manufacturing Systems, 64, 220-235.

doi:10.1016/j.jmsy.2023.3456789

[21] Zhang, Y., Jiang, H., Feng, D., Xia, W., Fu, M., Huang, F., & Zhou, Y. (2015,

April). AE: An asymmetric extremum content defined chunking algorithm for fast

and bandwidth-efficient data deduplication. In 2015 IEEE Conference on Computer

Communications (INFOCOM) (pp. 1337-1345). IEEE.

REFERENCES

138

[22] Leesakul, W., Townend, P., & Xu, J. (2014, April). Dynamic data deduplication

in cloud storage. In 2014 IEEE 8th International Symposium on Service Oriented

System Engineering (pp. 320-325). IEEE.

[23] Krishnaprasad, P. K., & Narayamparambil, B. A. (2013, August). A proposal

for improving data deduplication with dual side fixed size chunking algorithm. In

2013 Third International Conference on Advances in Computing and

Communications (pp. 13-16). IEEE.

[24] Luo, S., & Hou, M. (2013, December). A novel chunk coalescing algorithm for

data deduplication in cloud storage. In 2013 IEEE Jordan Conference on Applied

Electrical Engineering and Computing Technologies (AEECT) (pp. 1-5). IEEE.

[25] Xia, W., Zhou, Y., Jiang, H., Feng, D., Hua, Y., Hu, Y., ... & Zhang, Y. (2016).

{FastCDC}: A fast and efficient {Content-Defined} chunking approach for data

deduplication. In 2016 USENIX Annual Technical Conference (USENIX ATC 16)

(pp. 101-114).

[26] V. Balas C. Jain X. Zhao , Information Technology and Intelligent

Transportation Systems , Volume 2, 2015

[27] Begum, M. J., & Haritha, B. (2020). Data Deduplication Strategies in Cloud

Computing. International Journal of Innovative Science and Research Technology,

5(8), 734-738.

[28] Burramukku, Tirapathi & Ramya, U. & Sekhar, M.V.P.. (2016). A comparative

study on data deduplication techniques in cloud storage. 8. 18521-18530.

REFERENCES

139

[29] A. Venish and K. S. Sankar, "Study of chunking algorithm in data

deduplication," in Proc. of International Conference on Soft Computing Systems,

pp. 13-20, 2016.

[30] N. Bjorner, A. Blass, and Y. Gurevich, "Content-dependent chunking for

differential compression, the local maximum approach," Journal of Computer and

System Sciences, vol. 76, no. 3-4, pp. 154-203, 2010.

https://doi.org/10.1016/j.jcss.2009.06.004

[31] M. Rabin, “Fingerprinting by random polynomials, no. tr-15-81,” Cambridge,

MA, USA: Center for Research in Computing Techn., Aiken Computation

Laboratory, Harvard Univ, pp. 15–18, 1981.

[32] R. Raju, M. Moh, and T. Moh, “Compression of wearable body sensor network

data using improved two-threshold-two-divisor data chunking algorithms,” in 2018

International Conference on High Performance Computing Simulation (HPCS), July

2018, pp. 949–956.

[33] N. Bjørner, A. Blass, and Y. Gurevich, “Content-dependent chunking for

differential compression, the local maximum approach,” J. Comput. Syst. Sci., vol.

76, no. 3-4, pp. 154–203, May 2010. [Online]. Available:

http://dx.doi.org/10.1016/j.jcss.2009.06.004

[34] Y. Zhang, D. Feng, H. Jiang, W. Xia, M. Fu, F. Huang, and Y. Zhou, “A fast

asymmetric extremum content defined chunking algorithm for data deduplication in

backup storage systems,” IEEE Transactions on Computers, vol. 66, no. 2, pp. 199–

211, Feb 2017

REFERENCES

140

[35] R. N. S. Widodo, H. Lim, and M. Atiquzzaman, “A new content-defined

chunking algorithm for data deduplication in cloud storage,” Future Generation

Computer Systems, vol. 71, pp. 145–156, 2017

[36] Y. Tan and Z. Yan, “Multi-objective metrics to evaluate deduplication

approaches,” IEEE Access, vol. 5, pp. 5366–5377, 2017

[37] W. Tian, R. Li, Z. Xu, and W. Xiao, “Does the content defined chunking really

solve the local boundary shift problem?” in 2017 IEEE 36th International

Performance Computing and Communications Conference (IPCCC), Dec 2017, pp.

1–8

[38] C. Zhang, D. Qi, Z. Cai, W. Huang, X. Wang, W. Li, and J. Guo, “Mii: A novel

content defined chunking algorithm for finding incremental data in data

synchronization,” IEEE Access, vol. 7, pp. 86 932–86 945, 2019.

[39] B. Chapuis, B. Garbinato, and P. Andritsos, “Throughput: A key performance

measure of content-defined chunking algorithms,” in 2016 IEEE 36th International

Conference on Distributed Computing Systems Workshops (ICDCSW), June 2016,

pp. 7–12

[40] Habeeb, Ahmed. (2018). Introduction to Secure Hash Algorithms.

10.13140/RG.2.2.11090.25288.

[41] López, C. C., Crama, Y., Pironet, T., & Semet, F. (2024). Multi-period

distribution networks with purchase commitment contracts. European Journal of

Operational Research, 312(2), 556-572.

REFERENCES

141

[42] Kumar, A., de Jesus Pacheco, D. A., Kaushik, K., & Rodrigues, J. J. P. C.

(2022). Futuristic view of the internet of quantum drones: review, challenges and

research agenda. Veh. Commun. 36, 100487 (2022).

[43] Guimarães, A., Aranha, D. F., & Borin, E. (2019). Optimized implementation

of QC‐MDPC code‐based cryptography. Concurrency and Computation: Practice

and Experience, 31(18), e5089.

[44] Drucker, N., Gueron, S., & Kostic, D. (2020, June). Fast polynomial inversion

for post quantum QC-MDPC cryptography. In International Symposium on Cyber

Security Cryptography and Machine Learning (pp. 110-127). Cham: Springer

International Publishing.

[45] H. Guesmi and L. A. Saïdane, "Improved Data Storage Confidentiality in Cloud

Computing Using Identity-Based Cryptography," 2017 25th International

Conference on Systems Engineering (ICSEng), Las Vegas, NV, USA, 2017, pp.

324-330, doi: 10.1109/ICSEng.2017.32.

[46] Lee, H. N., Kim, Y. S., Singh, D., & Kaur, M. (2022). Green Bitcoin: Global

Sound Money. arXiv preprint arXiv:2212.13986.

[47] Kumar, S., Banka, H., Kaushik, B., & Sharma, S. (2021). A review and analysis

of secure and lightweight ECC‐based RFID authentication protocol for Internet of

Vehicles. Transactions on Emerging Telecommunications Technologies, 32(11),

e4354.

[48] Thalapala, V. S., Mohan, A., & Guravaiah, K. (2022). Woaccpp: Wisdom of

artificial crowds for controller placement problem with latency and reliability in

sdn-wan.

REFERENCES

142

[49] Rahimi, S., Jackson, R., Farahibozorg, S. R., & Hauk, O. (2023). Time-

Lagged Multidimensional Pattern Connectivity (TL-MDPC): An EEG/MEG

pattern transformation based functional connectivity metric. NeuroImage, 270,

119958.

[50] Jamali, S., Talebi, M. M., & Fotohi, R. (2021). Congestion control in high‐

speed networks using the probabilistic estimation approach. International

Journal of Communication Systems, 34(7), e4766.

[51] Aravkin, A., Kumar, R., Mansour, H., Recht, B., & Herrmann, F. J. (2014). Fast

methods for denoising matrix completion formulations, with applications to robust

seismic data interpolation. SIAM Journal on Scientific Computing, 36(5), S237-

S266.

[52] Jamali, S., Talebi, M. M., & Fotohi, R. (2021). Congestion control in high‐

speed networks using the probabilistic estimation approach. International Journal

of Communication Systems, 34(7), e4766.

[53] Gill, S. S., Kumar, A., Singh, H., Singh, M., Kaur, K., Usman, M., & Buyya,

R. (2022). Quantum computing: A taxonomy, systematic review and future

directions. Software: Practice and Experience, 52(1), 66-114.

[54] Xie, H., Qin, Z., Li, G. Y., & Juang, B. H. (2021). Deep learning enabled

semantic communication systems. IEEE Transactions on Signal Processing, 69,

2663-2675.

[55] Aragon, N., Gaborit, P., Hauteville, A., Ruatta, O., & Zémor, G. (2019). Low

rank parity check codes: New decoding algorithms and applications to cryptography.

IEEE Transactions on Information Theory, 65(12), 7697-7717.

REFERENCES

143

[56] Ravi, P., Najm, Z., Bhasin, S., Khairallah, M., Gupta, S. S., & Chattopadhyay,

A. (2019). Security is an architectural design constraint. Microprocessors and

microsystems, 68, 17-27.

[57] Eshghi, K., & Tang, H. K. (2005). A framework for analyzing and improving

content-based chunking algorithms. Hewlett-Packard Labs Technical Report TR,

30(2005).

[58] Zhang, Y., Jiang, H., Feng, D., Xia, W., Fu, M., Huang, F., & Zhou, Y. (2015,

April). AE: An asymmetric extremum content defined chunking algorithm for fast

and bandwidth-efficient data deduplication. In 2015 IEEE Conference on Computer

Communications (INFOCOM) (pp. 1337-1345). IEEE.

[59] N. A. Et al., “An enhanced approach to improve the security and performance

for deduplication,” Turkish Journal of Computer and Mathematics Education

(TURCOMAT), vol. 12, no. 6, pp. 2866–2882, 2021.

doi:10.17762/turcomat.v12i6.5797

[60] Vuong, H., Nguyen, H., & Tran, L. (2022). A Design of Parallel Content-

Defined Chunking System Using Non-Hashing Algorithms on FPGA. IEEE Access,

10, 82036-82048.

[61] Saranya, R., Vidhya, S., Muthumari, M., & Sangeerthana, B. Data

Deduplication in Cloud by Chunking.

[62] M. Mister, “10 advantages and disadvantages of cloud storage,” Organize and

Access Files From Anywhere, https://www.promax.com/blog/10-advantages-and-

disadvantages-of-cloud-storage

https://www.promax.com/blog/10-advantages-and-disadvantages-of-cloud-storage
https://www.promax.com/blog/10-advantages-and-disadvantages-of-cloud-storage

REFERENCES

144

[63] Viji, D., & Revathy, S. (2021). Comparative analysis for content defined

chunking algorithms in data deduplication. Webology, 18(SpecialIssue2), 255-268.

[64] u-next.com, “Top 10 advantages and disadvantages of cloud storage: Unext,”

UNext, https://u-next.com/blogs/cloud-computing/top-10-advantages-and-

disadvantages-of-cloud-storage/

[65] A. S. Gillis, “What is IOT (internet of things) and how does it work? - definition

from techtarget.com,” IoT Agenda,

https://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT

[66] Xia, W., Zou, X., Jiang, H., Zhou, Y., Liu, C., Feng, D., ... & Zhang, Y. (2020).

The design of fast content-defined chunking for data deduplication based storage

systems. IEEE Transactions on Parallel and Distributed Systems, 31(9), 2017-2031.

[67] Viji, D., & Revathy, S. (2021). Comparative analysis for content defined

chunking algorithms in data deduplication. Webology, 18(SpecialIssue2), 255-268.

[68] Yoon, M. (2019). A constant-time chunking algorithm for packet-level

deduplication. ICT Express, 5(2), 131-135.

[69] Vuong, H., Nguyen, H., & Tran, L. (2022). A Design of Parallel Content-

Defined Chunking System Using Non-Hashing Algorithms on FPGA. IEEE Access,

10, 82036-82048.

[70] Jeong, Y. S., & Park, J. H. (2018). Advanced data processing, optimization &

software engineering. Journal of Information Processing Systems, 14(5), 1063-1067.

[71] Jeong, Y. S., & Park, J. H. (2018). Advanced data processing, optimization &

software engineering. Journal of Information Processing Systems, 14(5), 1063-

1067.

https://u-next.com/blogs/cloud-computing/top-10-advantages-and-disadvantages-of-cloud-storage/
https://u-next.com/blogs/cloud-computing/top-10-advantages-and-disadvantages-of-cloud-storage/
https://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT

REFERENCES

145

[72] Saeed, A. S. M., & George, L. E. (2020). Data deduplication system based on

content-defined chunking using bytes pair frequency occurrence. Symmetry,

12(11), 1841.

[73] www.zdnet.com, “What is the iot? everything you need to know about the

internet of things right now,” ZDNET, https://www.zdnet.com/article/what-is-the-

internet-of-things-everything-you-need-to-know-about-the-iot-right-now/

[74] Yash Arora • May 27th, I. S. Ganiyu, Y. Arora, and K. Tolety,

“Data Segmentation in data mining: Strategy talks & more,” Hevo,

https://hevodata.com/learn/data-segmentation-in-data-mining/ .

[75] S. Hiter, “What is data segmentation?: Datamation: Security,” Datamation,

https://www.datamation.com/security/data-segmentation/ .

[76] Iliev, I., Sulikovska, I., Ivanova, E., Dimitrova, M., Nikolova, B., &

Andreeva, C. (2022). Validation of a Light Source for Phototoxicity in in vitro

Conditions. International Journal Bioautomation, 26(2), 141.

[77] C. S. N. Koushik, S. B. Choubey, A. Choubey, and G. R. Sinha, “Study of data

deduplication for file chunking approaches,” Data Deduplication Approaches, pp.

111–124, 2021. doi:10.1016/b978-0-12-823395-5.00008-2

[78] G.R. Sinha, Tin Thein Thwel, Samrudhi Mohdiwale, and Divya Prakash

Shrivastava, "Data Deduplication Approaches: Concepts, Strategies, and

Challenges," in Data Deduplication Approaches, 2021, pp. 1-15.

https://doi.org/10.1016/B978-0-12-823395-5.00019-7

[79] K. Vijayalakshmi and V. Jayalakshmi, "Analysis on data deduplication

https://hevodata.com/learn/data-segmentation-in-data-mining/
https://www.datamation.com/security/data-segmentation/
https://doi.org/10.1016/B978-0-12-823395-5.00019-7

REFERENCES

146

techniques of storage of big data in cloud," in International Conference.

[80] Srinivasan, Karthik, et al. "Secure multimedia data processing scheme in

medical applications." Multimedia Tools and Applications (2022): 1-12.

[81] Kumari, Aparna, and Sudeep Tanwar. "A secure data analytics scheme for

multimedia communication in a decentralized smart grid." Multimedia Tools and

Applications 81.24 (2022): 34797-34822.

[82] Dhar, Shalini, Ashish Khare, and Rajani Singh. "Advanced security model for

multimedia data sharing in Internet of Things." Transactions on Emerging

Telecommunications Technologies 34.11 (2023): e4621.

[83] Sharma, Neha, Chinmay Chakraborty, and Rajeev Kumar. "Optimized

multimedia data through computationally intelligent algorithms." Multimedia

Systems 29.5 (2023): 2961-2977.

