

Efficient Cloud Storage Mechanism for

IoT Environment

ABSTRACT

This thesis aims to address the pressing need for efficient and secure management

of multimedia data in today's digital landscape. Motivated by the growing volume
2024 A.D 1445 A.H

and importance of multimedia data, the thesis endeavors to develop a

comprehensive multimedia data management system. The primary problem

addressed is the challenge of ensuring efficient storage and retrieval while

maintaining data integrity and security in cloud storage environments.

Methodologically, the thesis leverages various techniques, including data retrieval,

encryption, deduplication, and performance simulation, to tackle this challenge

comprehensively. Data retrieval is facilitated through a robust mechanism designed

to efficiently access multimedia data stored in cloud storage systems. By employing

structured tables and utilizing identifiers, segment numbers, and hash values, data

retrieval ensures both integrity and efficiency.

Security is a paramount concern, and to address it, the system employs symmetric

encryption techniques such as the Advanced Encryption Standard (AES). Each

multimedia segment undergoes encryption using a unique encryption key, ensuring

confidentiality during storage and transmission, thereby safeguarding against

unauthorized access and potential data breaches.

Furthermore, storage redundancy is minimized, and resource utilization optimized

through deduplication techniques. By maintaining a hash table and identifying

duplicate multimedia segments, the system conserves storage space and enhances

overall efficiency, reducing the risk of data inconsistency.

The thesis also includes simulations for file transfer times and throughput,

considering various file sizes and concurrency levels. These simulations provide

valuable insights into system performance under diverse conditions, enabling

informed decision-making and optimization strategies.

Through the integration of key generation, block processing, and MDPC algorithm

implementation, the multimedia data management system offers enhanced

functionality and performance. Overall, this research yields a comprehensive

solution for the efficient, secure, and optimized handling of multimedia data in cloud

storage environments.

TABLE OF CONTENT

ABSTRACT .. 1

LIST OF FIGURES .. 7

LIST OF TABLES .. 9

CHAPTER-1 ... 2

INTRODUCTION .. 2

1.1 Introduction ... 2

1.2 Cloud Storage Mechanism .. 3

1.3 Literature Survey .. 5

1.4 Research problem.. 16

1.5 Research Objectives .. 17

1.6 Contribution of the Research .. 18

1.7 significance of the research ... 18

1.8 Outlines of Thesis ... 19

CHAPTER – 2 .. 21

THEORETICAL BACKGROUND .. 21

2.2 Data Deduplication ... 22

2.2.1 Methods of Data Deduplication ... 26

2.2.3 Process of Data .. 34

2.3 Purpose of Data Deduplication ... 36

2.4 Chunking Algorithm ... 38

2.5 Hash Value (HV) .. 40

2.6 Dynamic Prime Chunking... 42

2.6.1 Dynamic Prime Chunking Design ... 42

2.6.2 Workflow of DPC .. 44

2.7 Content Defined Chunking (CDC) Algorithms .. 45

2.9 Secure Hash Algorithm ... 50

2.9.1 SHA – 1.. 52

2.9.2 SHA-512 .. 53

CHAPTER – 3 .. 59

Proposed Mechanism .. 59

3.1 Introduction ... 59

3.4 The Proposed System .. 63

3.5 Simulation Used .. 67

3.6 MDPC Algorithm.. 69

3.6.1 Mathmitcal Model ... 69

3.6.2 Properties MDPC algorithm ... 70

3.6.3 Key properties when use MDPC in IoT environment .. 72

3.7 Enhanced Congestion Control Mechanism ... 76

3.8 Analysing the MDPC's behaviour for the CDC's.. 78

3.9 Theoretical Comparison .. 80

3.10 SHA -1 - Method Used to Eliminates Redundancies.. 82

3.11 Tool for Cloud Storage in IoT .. 84

3.11.1 Software Requirements .. 84

3.12.2 The specifications for a benchmarking tool for cloud storage systems 87

3.11.3 System Architecture Goals .. 91

3.11.4 System Architecture ... 93

3.11.5 Cooperation with other tools .. 97

CHAPTER - 4 ... 96

SYSTEM IMPLEMENTATION AND RESULTS .. 96

4.1 Introduction ... 96

4.2 deduplication Technique for cloud storage ... 97

4.2.1 Data Segmentation ... 98

4.2.2 Deduplication ... 101

4.2.3 Indexing ... 103

4.2.5 Data Retrieval .. 105

4.3 Comparative Study table of Rabin, TTTD, MAP, AE and MDPC................................... 106

4.4 BenchCloud Utilization .. 107

4.5 MDPC Results .. 110

4.5.1 Benchmarking Environment .. 110

4.5.2 The effect of concurrency on file uploading/downloading performance 111

4.5.3 The effect of file size on file uploading/downloading performance 113

4.5.4 Investigate the feasibility of employing cloud ... 115

4.6 Synchronisation clients' characteristics .. 118

4.8 Summary ... 131

CHAPTER 5 ... 134

CONCLUSION AND RECOMMENDATION .. 134

5.1 Conclusion .. 134

5.2 Recommendation .. 136

5.3 Future Scope ... 139

REFERENCES ... 142

LIST OF FIGURES

Figure 1.1: Cloud Storage ... 3

Figure 2.1: (a,b&c): Data De-duplication ...24

Figure 2.2: Deduplication Flowchart ...35

Figure 2.3: Chunking Algorithm ..39

Figure 2.4: Hash value ...41

Figure 2.5 : Fixed size chunking of data packet ..42

Figure 2.6: The workflow of DPC algorithm ..44

Figure 2.7: Hash function ...51

Figure 3.1: Flowchart Methodology ..62

 Figure 3.2: Design Research Methodology …………………..………………….64

Figure 3.3: IOT Cloud Benchmark Architecture …………………………………71

Figure 3.4: Additive-Increase/Multiplicative-Decrease …………..………………75

Figure 3.5: Implemented Model …………….……………………………………77

Figure 3.6: System Architecture of Bench Cloud ..89

Figure 3.7: (a), (b) Two styles of test architecture...90

Figure 4.1: Segment Number ……………………………………………..……..101

Figure 4.2: Data Point Index …………………………….………………..……..103

Figure 4.3: Cloud Bench Marking Environment in JAVA………………..……..122

Figure 4.4: Setting up the data centres…………………………..……………….123

Figure 4.5: Data Centres Configurations………………...……………………….124

Figure 4.6: Implementing Proposed DPC algorithm……………………………..125

Figure 4.7: Simulation Area …………………….…….…………………………126

Figure 4.8: Benchmark …………………………………………………………..127

Figure 4.9: Data Center Response Time ………………………………………....128

Figure 4.10: Cost for Efficient Cloud Storage ………………..…..……………..129

Figure 4.11: Data Center BenchCloud Comparison …………………………….130

Figure 4.12: Storage Cost Per Algorithm…………..……………………………131

LIST OF TABLES

Table 1.1: Comparison of studies over Deduplication & chunking algorithm……11

Table 2.1: Data De-duplication Scenario & Typical space savings37

Table 4.1: Segmentation ..100

Table 4.2: Deduplication ..102

Table 4.3: Indexing ……………..………………………………….……..……..104

Table 4.4: Encryption ...105

Table 4.5: Data Retrieval ...106

Table 4.6: Comparative Rabin ,TTTD.MAXP, AE and MDPC …………………107

Table 4.7: Benchmarking Environment ……………………… …………………111

Table 4.8: File uploading performance with different levels of concurrency113

Table 4.9: File downloading performance with different levels of concurrency ..113

Table 4.10: File uploading performance with different file sizes114

Table 4.11: File downloading performance with different file sizes114

Table 4.12: File uploading time with different file time115

Table 4.13: File downloading time with different file time115

Table 4.14: Results of benchmarking for a system consisting of simulated sensor...…117

Table 4.15: Examine the uploading of files' readiness time…..…….……………118

Table 4.16: Synchronisation clients' characteristics ……...…..…….……………119

Table 4.17 Compassion between Modified file size & Actual Traffic Reduction …… 121

List of Abbreviations

Abbreviation Meaning

AES Advanced Encryption Standard

AI Artificial Intelligent

HDD Hard Disk Device

SSD Solid State Device

DPC Dynamic Prime Chunking

AE Asymmetric Extremum

TTTD Two Threshold Two Divisor

DER Deduplication Element ratio

BSPS Byte Saved Per Second

CDC Content Defined Chunking

CL Chuck Length

HDFS Hard Distributed File System

TEE Trusted Encryption Environment

DD Data Deduplication

FF Fingerprint

GH Gear Hash

CA Chord Algorithm

CSE Cloud storage Environment

QoS Quality of Service

DSFSC Dual Side Fixed Size Chunking

GDPR General Data Protection Regular

HIPAA Health Insurance Probability and Account Act

HV Hash Value

LMC Lesk Measure of cohesion chunking

RAM Rapid Asymmetric Maximum

SHA Secure Hash Algorithm

MDPC Multiplicative-Divisive Probabilistic Congestion Control

MIDD Multiplicative Increase, Divisive Decrease

RTT Round Trip Time

AIMD Additive-Increase Multiplicative-Decrease

CSP Cloud Service Provider

FTP File Transfer Protocol

NPS Net Promoter Score

CHAPTER ONE

INTRODUCTION

CHAPTER ONE INTRODUCTION

2

CHAPTER-1

INTRODUCTION

1.1 Introduction

In our increasingly digital world, data has become a precious asset driving

innovation and efficiency across industries. However, managing this vast and

diverse volume of data poses significant challenges, particularly in the context of

IoT environments. Traditional storage solutions are often insufficient, prompting the

adoption of cloud storage as a versatile alternative. Cloud storage not only offers

ample space but also accessibility and security, making it an attractive option for IoT

applications. The integration of (AI) and cloud systems further enhances the

potential of IoT data, enabling efficient mining and analysis. IoT's embedded

intelligence empowers sensors to collect and analyze data, revolutionizing processes

across various sectors. Cloud storage facilitates the storage and processing of this

data, paving the way for enhanced operations and insights. [1] Despite its benefits,

cloud storage in IoT environments comes with its share of concerns, particularly

regarding security and control. Entrusting sensitive data to third-party providers

raises apprehensions about data integrity and privacy. Additionally, challenges such

as data migration and dependency on internet connectivity must be addressed. [2]

While cloud storage offers advantages such as disaster recovery, scalability, and

cost-effectiveness, it also poses challenges related to data control, vendor lock-in,

and connectivity issues. Understanding these pros and cons is essential for

organizations considering the adoption of cloud storage solutions in IoT

applications. [3] In conclusion, cloud storage holds promise for revolutionizing data

management in IoT environments, offering both benefits and challenges. By

carefully evaluating its implications and addressing potential drawbacks,

organizations can leverage cloud storage to unlock the full potential of IoT data

while ensuring security and efficiency in their operations. [4]

CHAPTER ONE INTRODUCTION

3

Figure 1.1: Cloud Storage [3]

1.2 Cloud Storage Mechanism

Every cloud has a certain amount of storage, so if start uploading duplicate

information, the storage will be lost, and dealing with data redundancy will become

a major issue. Researchers have been investigating numerous techniques to combat

this, and data deduplication is the best answer. A method called data deduplication

was developed to improve storage [77]. Different cloud service providers, including

Dropbox, Amazon S3 and Google Drive, now use this strategy. Data duplication is

prevented by making sure it is never uploaded to the cloud more than once.

A. As the amount of digital data grows, so does the need for greater storage space.

B. Traditional solutions don't have any built-in protection against duplicate data

being saved up.

C. Data De-duplication is critical for removing redundant data and lowering

storage costs.

The quantity of data generated is growing exponentially in quickly developing

digital age. The demand for more storage space has grown as more areas of life, from

social media interactions to business transactions, are becoming digitalized. This

article looks at how inadequate present storage capabilities are for keeping up with

the rate of expansion in digital data and the significance of finding a solution.

CHAPTER ONE INTRODUCTION

4

● A Partial Solution: The increased need for storage space has a partial solution

in the form of cloud storage. Cloud service providers can offer scalable

storage options to consumers and businesses by utilising the enormous

capabilities of data centres. This method, however, has its own set of

drawbacks, such as worries about data privacy, security lapses, and

dependence on outside sources [9]. Additionally, the cost of storing

significant amounts of data on the cloud can rise significantly, particularly for

long-term retention.

● Explosive Growth of Digital Data: The internet's rising use, the widespread

use of smartphones, and the rise of connected gadgets have all contributed to

the digital revolution's data explosion. The amount of digital data is always

growing because of all online interactions, transactions, sensor readings, and

media uploads.

● New Technologies for Data-Intensive Systems: The problem with storage is

made worse by the emergence of data-intensive technologies like artificial

intelligence, machine learning , and big data analytics. Massive datasets are

needed for these applications in order to build models and gain insightful

knowledge. Additionally, the growing use of virtual reality, augmented

reality, and high-definition multimedia content puts extra pressure on storage

infrastructure by necessitating higher capacity and quicker data retrieval.

The lack of storage capacity is becoming an urgent issue as the digital world

develops. Finding scalable and effective storage solutions is urgent given the

exponential growth of digital data and the rising demand for data-intensive

applications. While cloud storage provides a partial solution, research into next-

generation storage systems is necessary to make sure that the storage infrastructure

can sustain the ever-growing digital world [11]. It can fulfil the increasing need for

storage space and unleash every advantage of the digital age by making investments

in technology development and promoting innovation.

The problem of redundant information has grown significantly in importance in the

era of expanding digital data. Traditional storage solutions frequently do not have

built-in duplicate data management tools. The significance of data deduplication in

eliminating redundant data and lowering storage costs is highlighted in this article.

Duplicate data refers to information that is identical and spread across different

locations in a storage system. It may be caused by a number of things, including user

CHAPTER ONE INTRODUCTION

5

error, system backups, or data replication procedures [13]. Duplicate data not only

takes up valuable storage space, but it also drives up prices, slows down data

retrieval, and uses resources inefficiently. Hard disc drives (HDDs) and solid-state

drives (SSDs), two common types of traditional storage, lack built-in techniques for

locating and removing duplicate data. Organisations can considerably reduce their

storage needs by getting rid of duplicate data. However, ensuring that only one copy

of each piece of information is stored, data deduplication increases data efficiency.

Enhancing data integrity means reducing duplicate data [14]. Duplicate data can

cause conflicts and inconsistencies, jeopardising the accuracy and dependability of

data that is kept. Disaster recovery procedures might be hampered by duplicate data

since it increases backup and restore times. In today's data-driven world, adopting

data de-duplication is essential for effectively managing and maximising the value

of digital data.

1.3 Literature Survey

K. Vijayalakshmi and V. Jayalakshmi in (2021) [7] suggest data duplication in

clouds, which is managed using the de-duplication technique. Although some de-

duplication techniques are used to prevent data redundancy, they are inefficient. The

major goal of this research is to gain enough knowledge and a decent concept of de-

duplication techniques through reviewing existent ways, and this work may aid

future research in establishing effective cloud storage management (CSM) solutions

for researchers.

M. Ellappan and S. Abirami in (2021) [8] suggest a novel chunking algorithm called

Dynamic Prime Chunking (DPC). DPC's major purpose is to modify the window

size during the prime value dynamically rely on the maximum and minimal chunk

size. DPC in the de-duplication scheme gives good throughput while avoiding large

chunk variance. The multimedia and operating system datasets were used for

implementation and experimental evaluation. Existing algorithms such as AE,

MAXP, TTTD, and Rabin have been compared to DPC. The performance indicators

looked at were throughput, chunk count, Bytes Saved per Second (BSPS), chunking

time, processing time and De-duplication removal Ratio (DER). BSPS and

throughput have both improved. To begin, DPC boosts throughput performance by

CHAPTER ONE INTRODUCTION

6

greater than 21% when compared to AE. BSPS improves performance by up to 11%

over the previous AE method.

P.Anitha et al. in (2021) [9] the secure authorities are given access control

mechanisms to do data de-duplication (DD) on the data that was outsourced.

Encryption techniques are used in the Access Control Mechanism. It employs

convergent randomised encryption and a reliable distribution of owning party keys

to allow the cloud service provider to manage outsourced data access even when

control shifts on a regular basis. The suggested technique safeguards data integrity

against attacks relies on label discrepancies. As a precaution, the suggested

technique has been changed to improve security.

Xu and W. Zhang in (2021) [10] QuickCDC improves CDC chunking speed, de-

duplication ratio, and throughput by combining three methods. Initially, QuickCDC

can move instantly to the chunk boundaries of duplicate chunks that arise frequently.

The mapping of the duplicate chunk's first n bytes and last m bytes to chunk length

must be registered. The first n bytes and last m bytes of the current chunk are checked

to see if they are in the mapping table when chunking is performed. QuickCDC can

skip relevant chunk lengths (CL) if they are in the mapping table. QuickCDC can

skip the minimal chunk length for unique chunks. Finally, QuickCDC may

dynamically alter mask bits length such that chunk length (CL) is permanently more

than the minimal chunk length and is distributed in a limited particular location.

When the current chunk length (CL) is less than the expected chunk length (CL),

should use longer mask bits, and when the current chunk length (CL) is more than

the expected chunk length (CL), should utilize shorter mask bits. Experiments show

that QuickCDC's chunking speed is 11.4x that of RapidCDC, and the associated de-

duplication ratio is somewhat increased, with a maximum de-duplication ratio

improvement of 222.3% and a throughput improvement of 111.4%.

N. Kumar and S. Jain in (2019) [11] suggest Differential Evolution DE-rely on

TTTD-P optimized chunking to maximize chunking throughput while increasing de-

duplication ratio DR The use of a scalable bucket indexing strategy minimizes the

time it takes to find and declare duplicated hash values (HV). It chunks about 16

times greater than Rabin CDC, 5 times greater than AE CDC, and 1.6 times greater

than FAST CDC (HDFS).

CHAPTER ONE INTRODUCTION

7

Y. Fan et al., in (2019) [12] system improves the capacity of like cryptosystems to

resist selected plaintext and selection ciphertext attacks by augmenting convergent

encryption with users' privileges and relying on TEE to provide secure key

management. system is secured sufficient to facilitate data de-duplication (DD) as

well as protecting the privacy of sensitive data, according to a security analysis.

Moreover, create a prototype of system and analyze its performance. Experiments

reveal that system overhead is practical in real-world scenarios.

H. A. Jasim and A. A. Fahad, in (2018) [13] novel fingerprint function (FF), a multi-

level hashing and matching mechanism, and a novel indexing technicality to hold

metadata to progress the TTTD chunking algorithm. These novel technicalities

include four hashing algorithms to handle the collision issue, as well as adding a

novel chunk stipulation to the TTTD chunking criterion to improve the number of

small chunks and hence the De-duplication Ratio.

H. Wu. In (2018) [14] suggests a sampling-rely on chunking algorithm and improve

SmartChunker, a tool to predict the appropriate chunking configuration for de-

duplication schemes. Smart Chunk's effectiveness and efficacy have been

demonstrated in real-world datasets.

M. Oh et al., in (2018) [15] suggest novel de-duplication technique that is extremely

compatible and scalable with the exhausted storage currently in use. The approach

combines file system and de-duplication meta-information into a single object, and

it manages the de-duplication ratio online through initial aware of post-processing-

related scheme demands. When executing a variety of standard storage workloads,

the experimental findings illustrate that solution could save greater than 90% of total

storage space while providing the same or similar performance as traditional scale-

out storage.

W. Xia et al. in (2016) [16] suggest FastCDC, a Fast and effective CDC approach,

which constructs and enhances on the latest Gear-based on CDC technique, one of

the fastest CDC techniques to knowledge. FastCDC's main idea is to integrate five

key mechanics: gear-rely on rapid rolling hash, improving and simplifying Gear hash

(GH) verdict, skipping sub-minimal chunk cut-points, normalizing the chunk-size

distribution in a small specific region to address the issue of reduction de-duplication

CHAPTER ONE INTRODUCTION

8

ratio caused by cut-point skipping. FastCDC is around 10 times quicker than the best

open- source Rabin-based on CDC, and about 3 times greater than the state-of-the-

art Gear- and AE-rely on CDC, while obtaining almost the same de-duplication ratio

as the standard Rabin-rely solution, according to evaluation results.

X. Xu. et al. in (2016) [17] focus on non-center cloud storage data de-duplication

and present a new two-side data de-duplication (DD) mechanism. The Chord

algorithm (CA) is optimized. The suggested two-side data de-duplication (DD)

technique outperforms the traditional data de-duplication (DD) mechanism in terms

of de-duplication rate.

R. Kiruba karan et al. in (2015) [18] present a cloud-based technique for achieving

de-duplication of a huge amount of data available. The approach includes data de-

duplication before uploading to cloud storage as well as data reverse de-duplication

when obtaining the required data. The model is more effective and accurate than

existing de-duplication systems because of the type of algorithm utilized.

V. Maruti et al. in (2015) [19] the main goal of this technique is to delete reiterate

data from the cloud. It can also aid in the reduction of bandwidth and storage space

usage. Each user has their own unique token and has been allocated various

privileges based on the duplication check. The hybrid cloud architecture is used to

achieve cloud de-duplication. The proposed technique is more secure and uses fewer

cloud resources. It was also demonstrated that, when compared to the standard De-

duplication technique, the proposed system had a low overhead in duplicate removal.

On this work, both content level and file level de-duplication of file data is examined

in the cloud.

X. Xu and Q. Tu, in (2015) [20] de-duplication scheme architecture for cloud storage

environments (CSE). DelayDedupe, a delayed target de-duplication strategy rely on

chunk-level de-duplication and chunk access frequency, is suggested to decrease

response time in storage nodes (S nodes). When used in conjunction with replica

arrangement, this technique evaluates whether fresh multiplied chunks for data

update are hot and, if they aren't, eliminates the hot duplicated chucks. The findings

of the experiment show that the DelayDedupe method may successfully minimize

response time while also balancing the storage demand on Nodes.

CHAPTER ONE INTRODUCTION

9

Y. Zhang in (2015) [21] Suggested a novel CDC algorithm indicated the

Asymmetric Extremum (AE) algorithm. The major idea behind AE is relies the

observance that in dealing with the boundaries-shift issue, the maximum value in an

asymmetric local domain is improbable to be exchanged through a novel extreme

value, which motivates AEs utilize of asymmetric (instead of symmetric, as in

MAXP) local domain to distinguish cut-points and attain high chunking throughput

while minimizing chunk size variance. According to the result, AE addresses the

issues of low chunking throughput in MAXP and Rabin, as well as excessive chunk-

size volatility in Rabin, at the same time. AE enhances the throughput speed of state-

of-the-art CDC algorithms by 3x while achieving equivalent or greater de-

duplication efficacy, according to experimental results that rely on four real-world

datasets.

W. leesakul et al. in (2014) [22] suggested dynamic data de-duplication (DD)

strategy for cloud storage, in order to strike a balance among changing storage

efficacy and criteria for fault tolerance, as well as to increase cloud storage

performance. adjust the number of copies of files in real time to match the changing

degree of QoS. The results of the experiments reveal that suggested scheme works

effectively and can deal with scalability issues.

Krishnaprasad and B. A. Narayamparambil in (2013) [23] suggested a novel Dual

Side Fixed Size Chunking (DSFSC) algorithm to achieve a rising de-duplication

ratio for comparison to conventional FSC. This approach can successfully be utilized

for audio or video files to produce a best De-duplication ratio without requiring

computationally exorbitant variable size chunking or content determined chunking.

Storage management and energy expenses will be reduced if storage requests are

reduced.

In recent years, the proliferation of multimedia data in various applications has

brought forth challenges related to security, data analytics, sharing, and

optimization. This literature review synthesizes findings from four key studies in the

field, focusing on secure multimedia data processing, data analytics, security

models, and optimization techniques in diverse contexts.

CHAPTER ONE INTRODUCTION

10

Srinivasan et al. (2022) propose a Secure Multimedia Data Processing Scheme for

medical applications. They address the crucial need for security in handling sensitive

medical data by introducing a scheme that ensures secure processing of multimedia

data. By employing encryption techniques and access controls, the proposed scheme

aims to safeguard patient privacy and prevent unauthorized access to medical

records. This study underscores the importance of security measures in medical

applications to maintain data integrity and confidentiality.

Kumari and Tanwar (2022) present a Secure Data Analytics Scheme tailored for

multimedia communication within a decentralized smart grid infrastructure.

Focusing on the energy sector, their scheme addresses the challenges of securing

data analytics processes in decentralized environments. By integrating encryption,

authentication, and anomaly detection mechanisms, the proposed scheme enhances

the security of multimedia data transmission and analysis in smart grid networks.

This study highlights the significance of secure data analytics in ensuring the

reliability and integrity of critical infrastructure systems.

Dhar et al. (2023) introduce an Advanced Security Model for Multimedia Data

Sharing in the Internet of Things (IoT) environment. Recognizing the vulnerability

of IoT devices to security threats, their model offers a comprehensive approach to

securing multimedia data sharing in IoT ecosystems. Through the integration of

access control, authentication, and encryption techniques, the proposed model aims

to mitigate risks associated with unauthorized access and data breaches. This study

emphasizes the need for robust security models to address the unique challenges

posed by multimedia data sharing in IoT environments.

Sharma et al. (2023) focus on optimizing multimedia data using computationally

intelligent algorithms. Their study explores the application of artificial intelligence

techniques to enhance the efficiency and performance of multimedia systems. By

leveraging intelligent algorithms such as machine learning and optimization

algorithms, the proposed approach aims to optimize multimedia data processing,

storage, and retrieval. This research underscores the potential of computational

intelligence in addressing the complexities of multimedia data management and

improving system performance.

CHAPTER ONE INTRODUCTION

11

Overall, the reviewed studies underscore the critical importance of security, data

analytics, and optimization techniques in handling multimedia data across various

domains. These studies offer valuable insights and methodologies for addressing the

challenges associated with secure processing, sharing, and optimization of

multimedia data, thereby contributing to advancements in the field of multimedia

tools and applications.

S. Luo and M. Hou in (2013) [24] suggest a new chunk coalescing algorithm (CCA),

this refers to the minimal and maximum amount of sub chunks which should be

coalesced to form super chunks (SC). Experiments demonstrate that algorithm

eliminates the expenses of the chunk coalescing (CC) procedure and speeds up the

entire data de-duplication procedure.

Table 1.1: Comparison of studies over Data De-duplication & chunking

algorithm

S.

No.

Authors Algorithm/method/

Techniques

 Advantages Drawback

1 N. Kumar and

S. Jain 2019

Differential

Evolution (DE),

Two Thresholds

Two Divisors

(TTTD-P)

algorithm,

 Hash values

(chunks about 16

times greater

than Rabin CDC,

5 times greater

than AE CDC,

and

1.6 times greater

than

FAST CDC

Take too much

time to

calculate the

hash value.

2 W. Leesakul

et al. 2014

Dynamic Data De-

duplication

 experiments

reveal that our

proposed system

works effectively

Cannot work

with the

encryption

keys

CHAPTER ONE INTRODUCTION

12

3 Y. Fan et al.

2019

De-duplication

system that includes

the processes of

duplicate checking

 implement the

security analysis

and also

performance

evaluation is

effective and

feasible in

practice

Take too much

processing

power of the

system and

consume more

power

4 M. Oh et al.

2018

A novel

de-duplication

technique

 experimental

findings illustrate

that our solution

could save

greater than 90%

of total storage

space

It will occupy

more than

20% more

storage than

other

algorithms

5 P. Anitha et

al. 2021

secure rising

scalable data de-

duplication

architecture

 The system is

virtually as

successful as the

existing ones

(minor increase

in computational

overhead)

Risk factors

high

6 R. Kiruba

karan et al

2015

a cloud-rely

technique for de-

duplication of huge

data

 The model is

more efficient

and accurate

compared to that

of the existent

de-duplication

techniques.

The model is

efficient but it

is too costly.

7 M. V. Maruti

et al. 2015

novel duplication

check technique that

configuration the

token for the private

file

 the system

achieve is 98 %

Consume

more power

for execution

CHAPTER ONE INTRODUCTION

13

8 K.

Vijayalakshmi

and V.

Jayalakshmi

2021

data duplication

(DD) in clouds

 the system

achieves efficient

knowledge and a

good idea

concerning de-

duplication

techniques

Can not

manage TB of

data in the

cloud

environment

9 X. Xu et al

2016

two- side data de-

duplication (DD)

technique, Chord

algorithm

 two-side data de-

duplication (DD)

technique

outperforms the

traditional data

de-duplication

technique in

terms of de-

duplication rate

Can not

manage more

than 50 VMs

10 X. Xu and Q.

Tu 2015

de-duplication

scheme architecture

for cloud storage

environments (CSE)

 Delay Dedupe

method may

successfully

minimize

response time

while also

balancing the

storage demand

on Snodes

algorithms

often lack

comprehensive

validation and

may not be

well-

understood by

the research or

practitioner

communities

11 M. Ellappan

and

S. Abirami

2021

Dynamic Prime

Chunking (DPC),

Existing algorithms,

 DPC's durable

performance

over the another

existent

algorithms in

terms of BSPS

and the efficacy

of the backup

Storage and

cost high

CHAPTER ONE INTRODUCTION

14

storage scheme

12 H. A. Jasim

and

A. A. Fahad

2018

a novel fingerprint

function (FF),

 good de-

duplication ratio

and rapid

execution time,

efficacy of the

suggest

algorithm was

evaluated

utilizing two

relatively

datasets

Efficiency

increases but

attack rate is

high

13 W. Xia et al.,

2016

FastCDC, a Fast

and effective CDC

approach

 FastCDC is

around 10 times

quicker than the

best open-source

Rabin- based on

CDC, and about

3 times greater

than the state-of-

the-art Gear- and

Algorithms in

terms of

Chunk and the

efficacy of the

backup storage

is less

14 Z. Xu and W.

Zhang 2021

Content Defined

Chunking (CDC)

 Show that

QuickCDC's

chunking speed

is 11.4x that of

RapidCDC, and

the associated

de-duplication

ratio is

somewhat

drawback of

the Content-

Defined

Chunking

(CDC)

algorithm is its

potential

sensitivity to

changes in data

CHAPTER ONE INTRODUCTION

15

increased, with a

maximum de-

duplication ratio

improvement of

222.3%

patterns.

15 S. Luo and M.

Hou 2013

a new chunk

coalescing.

algorithm (CCA)

 demonstrate that

our algorithm

eliminates the

expenses of the

chunk coalescing

procedure and

enhance the

efficacy of hash-

comparison

CCA may not

perform

optimally

across all

types of data

or workloads.

It is primarily

designed to

reduce

redundancy in

similar

chunks, so it

may not be as

effective for

datasets.

16 H. Wu et al.

2018

a sampling-based on

chunking algorithm

and improve

SmartChunker

 illustrate that a

sampling-based

chunking

algorithm and

enhance

SmartChunker

application-

specified chunk

configurations

The

algorithm's

efficiency can

be

compromised

if the chosen

sampling

strategy

introduces

bias, leading

to suboptimal

chunk

boundaries

CHAPTER ONE INTRODUCTION

16

1.4 Research problem

The rapid proliferation of the Internet of Things (IoT) has revolutionized the way

data is generated, transmitted, and utilized, fostering unprecedented opportunities

for innovation and efficiency across various domains. However, the seamless

integration of IoT devices with cloud computing platforms has brought forth a

myriad of challenges, particularly concerning the storage and management of vast

volumes of IoT-generated data. In this context, the pressing research problem lies in

the development of a robust and secure data storage mechanism tailored explicitly

for cloud based IoT applications. The current landscape of data storage in such

environments is fraught with obstacles, ranging from data security and privacy

concerns to the optimization of storage and retrieval processes.

First and foremost, the paramount concern revolves around ensuring the security and

privacy of IoT-generated data stored within the cloud. Given the sensitive nature of

much of this data, including personal and proprietary information, stringent

measures must be implemented to safeguard against unauthorized access, data

breaches, and malicious attacks. Furthermore, compliance with regulatory

frameworks, such as GDPR and HIPAA, adds an additional layer of complexity to

data security requirements. Moreover, the scalability and accessibility of data

storage solutions in cloud based IoT environments pose significant challenges. As

the volume of data continues to escalate exponentially with the proliferation of IoT

devices, traditional storage architectures struggle to keep pace with the demands for

scalability and efficiency. Hence, there is a critical need for innovative approaches

that can seamlessly scale storage resources in response to fluctuating workloads

and reduced

effectiveness

CHAPTER ONE INTRODUCTION

17

while ensuring high availability and reliability. Furthermore, optimizing storage and

retrieval processes to enhance overall system performance and efficiency is

imperative. With the diverse nature of IoT-generated data, ranging from real-time

sensor readings to multimedia content, the design of storage mechanisms must be

tailored to accommodate varying data types and access patterns efficiently. This

entails the exploration of novel data storage architectures, data indexing techniques,

and data retrieval algorithms optimized for cloud-based IoT environments.

Addressing these multifaceted challenges requires a holistic approach that

encompasses technological innovation, robust security measures, regulatory

compliance, and efficient resource management. By developing an effective and

highly secure data storage mechanism specifically tailored for cloud based IoT

applications, we can unlock the full potential of IoT technologies while mitigating

the associated risks and ensuring the integrity and confidentiality of sensitive data.

This research endeavour holds immense significance in shaping the future trajectory

of IoT and cloud computing ecosystems, paving the way for a more connected,

secure, and resilient digital

1.5 Research Objectives

The aim of this research is to design a new efficient mechanism for cloud storage

and Internet of things environments. The proposed mechanism is designed to gain

attention in large-scale storage systems based on text, image, and video. Hence, in

order to achieve the research aim, the following objectives are formulated:

1) To design a new mechanism to improve the performance of a large storage

system by applying the de-duplication technique.

2) To evaluate the performance of the proposed mechanism in comparison with

available solutions in a simulated environment.

3) To verify and validate the proposed mechanism based on the results obtained

from the simulation experiments that ensure the correctness of its

implementation.

CHAPTER ONE INTRODUCTION

18

1.6 Contribution of the Research

The networked machines can connect with one another thanks to middleware, which

is another piece of software employed by the central server.

1) Mechanism Design: The research proposes a mechanism for cloud storage in IoT

environments, focusing on enhancing performance through the implementation of

deduplication techniques. This approach aims to optimize resource utilization and

reduce storage costs, addressing a key challenge in large-scale storage systems.

2) Performance Evaluation: The research conducts comprehensive performance

evaluations of the proposed mechanism compared to existing solutions in simulated

environments. By rigorously assessing its efficiency, scalability, and reliability, the

study provides valuable insights into the effectiveness of the proposed approach in

real-world applications.

3) Validation and Verification: Through rigorous validation and verification processes

based on simulation experiments, the research ensures the correctness and

effectiveness of the proposed mechanism. By verifying its functionality and

performance against established benchmarks, the study establishes the reliability

and viability of the proposed solution for practical deployment in cloud-based IoT

environments.

1.7 significance of the research

The successful resolution of the problem regarding an effective secured data storage

mechanism for cloud based IoT promises to bring about a multitude of significant

by enhancing security and privacy measures within the proposed mechanism, the

research directly addresses Objective. Achieving heightened security ensures the

protection of IoT-generated data stored in the cloud, aligning with the objective to

design a mechanism to improve large storage system performance through

deduplication techniques. As the proposed mechanism ensures secure and efficient

data storage, it directly contributes to instilling greater confidence in the utilization

of IoT technologies, supporting Objective. Organizations and individuals will trust

IoT applications more knowing their data is securely stored, thereby validating the

mechanism's performance in comparison with existing solutions. The enhanced

accessibility and reliability of IoT data resulting from the proposed mechanism

CHAPTER ONE INTRODUCTION

19

directly support Objective through verification and validation processes, the research

confirms the correctness and effectiveness of the mechanism, ensuring its reliability

in storing and retrieving data seamlessly. Efficient resource utilization, including

cost and energy savings, is a direct outcome of the proposed mechanism, in line with

Objective by optimizing storage efficiency through deduplication techniques, the

mechanism minimizes resource wastage, contributing to the performance

improvement of large-scale storage systems. The proposed mechanism's ability to

seamlessly scale to accommodate increasing volumes of IoT data aligns with

Objective through simulation experiments and performance evaluations, the

research verifies the mechanism's scalability, ensuring its suitability for evolving IoT

deployments without storage limitations.

1.8 Outlines of Thesis

The following chapters are presented in this thesis: Chapter One presents the basic

introduction, problem statement, methodology objective of the study and some other

aspects. Chapter Two presents the theoretical background. It theoretically explains

the method and techniques used in this study. The proposed methods or

methodology used in this study will be depicted in Chapter Three. The collected

methods, techniques, algorithms collected in the proposed methodology will be

analyzed in this chapter. The primary outcomes of the proposed system employing

various strategies are shown in Chapter Four. The findings are given separately for

each model. Chapter Five summarises the results reached throughout this thesis,

overall conclusion derives from the study and briefly lists potential future works .

CHAPTER TWO

THEORETICAL BACKGROUND

CHAPTER TWO THEORETICAL BACKGROUND

21

CHAPTER – 2

THEORETICAL BACKGROUND

2.1 Performance Metrics and its Types:

In today's interconnected world, the utilization of cloud storage in IoT environments

has become paramount for efficient data management. However, the success of

cloud storage implementation depends not only on its benefits but also on its

performance. Performance metrics play a crucial role in evaluating the effectiveness

and efficiency of cloud storage solutions for IoT applications. This paper explores

various types of performance metrics essential for assessing cloud storage

performance in IoT environments.

1. Throughput: Throughput measures the rate at which data can be transferred to and

from the cloud storage system. In IoT environments, where data is continuously

generated and transmitted by numerous sensors and devices, high throughput is

critical for timely data processing and analysis. Throughput metrics assess the

system's ability to handle data influx efficiently, ensuring smooth operations and

real-time insights.

2. Latency: Latency refers to the delay between data transmission and reception,

affecting the responsiveness of IoT applications. Low latency is essential for

applications requiring immediate data processing, such as real-time monitoring and

control systems. Latency metrics evaluate the speed of data retrieval and processing

within the cloud storage infrastructure, ensuring minimal delay and optimal

performance for IoT devices.

3. Availability: Availability measures the accessibility of data stored in the cloud

storage system. In IoT environments, where data accessibility is vital for decision-

making and operation, high availability is crucial to ensure uninterrupted access to

critical information. Availability metrics assess the reliability of the cloud storage

infrastructure, including backup and redundancy mechanisms, to maintain

continuous data availability and prevent downtime.

4. Scalability: Scalability evaluates the ability of the cloud storage system to

accommodate growing data volumes and user demands. In dynamic IoT

environments, where data volumes can fluctuate rapidly, scalable storage solutions

CHAPTER TWO THEORETICAL BACKGROUND

22

are essential to accommodate evolving needs. Scalability metrics assess the system's

capacity to scale resources seamlessly, ensuring consistent performance and

resource utilization as data requirements evolve over time.

5. Reliability: Reliability measures the consistency and predictability of cloud storage

performance over time. In IoT environments, where data integrity is crucial for

accurate analysis and decision-making, reliable storage solutions are essential to

maintain data consistency and integrity. Reliability metrics assess factors such as

system stability, data durability, and error handling capabilities to ensure consistent

performance and data integrity in diverse operational conditions.

2.2 Data Deduplication

Data duplication in Cloud IoT environments represents a critical challenge and

opportunity in the modern digital landscape. As IoT devices become more prevalent

and diverse, generating vast volumes of data, efficient data management is

paramount. Data duplication, in this context, refers to the occurrence of redundant

data across multiple IoT devices and cloud storage systems. Addressing this issue is

pivotal to optimizing storage resources, enhancing data processing speed, and

ensuring cost-effective operations in cloud based IoT setups. Cloud IoT

environments leverage sophisticated algorithms and techniques to identify and

eliminate duplicated data efficiently. By employing deduplication methods, such as

hash-based comparisons and metadata indexing, redundant data can be

systematically identified and stored only once, saving precious storage space and

network bandwidth [25].

Furthermore, in the context of Cloud IoT, data deduplication plays a crucial role in

ensuring data integrity, security, and real-time processing efficiency. Reducing data

duplication not only conserves storage resources but also enhances data analytics

and decision-making processes. In scenarios where real-time responses are essential,

eliminating duplicate data ensures that the analytics systems receive accurate and

up-to-date information, leading to more informed decisions. Additionally,

deduplication mitigates the risks associated with storing multiple copies of sensitive

IoT data, promoting data security and privacy compliance [26]. By implementing

robust data deduplication techniques within Cloud IoT environments, businesses can

CHAPTER TWO THEORETICAL BACKGROUND

23

unlock the full potential of their IoT ecosystems, fostering innovation and enabling

seamless integration of IoT technologies into various applications and industries.

(a) Fig: 2.1 Data Duplication [78]

The data duplication figure illustrates the process of data deduplication, which

involves identifying and eliminating duplicate copies of data. It includes steps

such as chunking data into smaller pieces, identifying unique data chunks, and

replacing redundant chunks with references to the unique ones. The figure also

depict how data deduplication improves storage efficiency and network transfer

by reducing the amount of redundant data stored and transmitted.

CHAPTER TWO THEORETICAL BACKGROUND

24

(b) Fig: 2.1 Data Duplication [79]

The data duplication figure illustrates various techniques and processes involved in

data deduplication for storage of big data in the cloud. It depicts methods such as

chunking, hashing, indexing, and duplicate detection algorithms. The figure also

highlights how these techniques contribute to reducing storage overhead and

improving storage efficiency in cloud environments.

Figure 2.1: (a,b&c): Data De-duplication [28]

CHAPTER TWO THEORETICAL BACKGROUND

25

Figure 2.1 in the research portrays the intricacies of data deduplication. It

encapsulates the process through three key elements: (a) Data Input, signifying the

initial data influx into the system; (b) Deduplication Process, showcasing various

stages such as chunking, hashing, and duplicate identification; and (c) Deduplicated

Data Output, illustrating the storage of unique data along with potential metadata or

pointers. This visualization serves to elucidate the methodology employed in

minimizing data redundancy and enhancing storage efficiency within the

deduplication framework.

A deduplication flowchart typically represents the process of identifying and

eliminating duplicate data within a system. The flowchart begins with the input of

data, which then undergoes a comparison process. During this step, the data is

analysed to identify duplicate elements. If duplicates are found, a decision point is

reached, leading to the removal of redundant data. After deduplication, the flowchart

might involve storing the cleaned data in a database or another storage system. This

process ensures that only unique and non-redundant data is retained, optimizing

storage space, improving data accuracy, and enhancing overall system efficiency.

By visually representing these steps, a deduplication flowchart provides a clear and

structured outline of the data cleaning process, aiding in understanding and

implementation for various applications, such as databases, cloud storage [27].

Data de-duplication, sometimes known as Dedup for short, is functions that can

assist minimize the cost of duplicate data storage. When Data De-duplication is

enabled, it optimizes free space on a volume by evaluating the data on the volume

and looking for duplicated portions. Duplicated portions of the volume's dataset are

stored just once and (optionally) compressed to save space. Data de-duplication

reduces redundancy while maintaining data authenticity and integrity.

Data de-duplication is a procedure that eliminates redundant data copies and

dramatically reduces storage capacity requirements. De-duplication can be

performed as an inline procedure as data is written into the storage system and/or as

a background operation to remove duplicates after data is stored to disk.

The performances for de-duplication operations are small since it runs in a separate

efficiency domain from the client read/write domain. It runs in the background,

CHAPTER TWO THEORETICAL BACKGROUND

26

regardless of which application is running or how the data is accessed (NAS or

SAN). De-duplication savings are preserved as data travels - when it is copied to a

disaster recovery site, backed up to a vault, or moved between on-premises, hybrid

cloud, and/or public cloud.

Chunking is the process of dividing a data stream into several pieces. When the

chunk size is high, the cost of computation is reduced, but the result of deduplication

may not be immediately apparent. When the chunk size is on the tiny side, the cost

of computation is high, and the impact of deduplication is noticeable.

2.2.1 Methods of Data Deduplication

The data gathered through various sources and the emergence of the IoT has

significantly increased the volume of data from petabytes to yottabytes, therefore

necessitating the cloud computing paradigm in order to process and store data. The

duplicated sections of the dataset are stored once along with being subjected to

optional compression to free up even more space. It is also beneficial in ensuring

veracity along with maintaining data integrity. [43] There are various methods of

data deduplication such as inline deduplication, post processing duplication, source

deduplication, target deduplication and client-side deduplication.

There are two approaches that may be used to remove unnecessary deduplicate from

material. [44]

1) Deduplication In-Line.

Due to the fact that it is processed inside a reinforcement framework, inline

deduplication simplifies the information. When information is maintained in contact

with reinforcement accumulating, it is possible to eliminate instances of duplication.

Although inline deduplication needs less stockpiling of reinforcements, it might still

result in bottlenecks. The capacity exhibit provider recommends that their inline data

deduplication solutions have their output twisted off in order to achieve high

throughput.

Inline deduplication is a widely prevalent method that comprises deduplication and

compression where data reduction takes place before the incoming data is written to

CHAPTER TWO THEORETICAL BACKGROUND

27

the stored media. Inline deduplication is essentially the removal of redundancies

from a given data along with being a software defined storage solution or a storage

controller that is in control of the places and the processes through which the data is

saved and secured. The Inline deduplication method takes account of the entirety of

data going through the tool and is scanned, deduplicated and compressed in real-

time. Additionally, inline processing is also found to reduce the raw disk capacity

that is needed in the system.

It takes place because the un-deduplicated and uncompressed dataset in its original

size is never written to the disk. Therefore, the write operations that are executed are

also comparatively lower thereby reducing the wear on the disks. However, it can

also be observed that in inline deduplication the process significantly slows down

the data backups that eventually is found to impede the entire process. This

eventually reflects the fact that the result will thereby be devoid of any redundant or

inefficient data. Inline deduplication is found to rely on the processes that exist

between the data origin servers and the data backup destinations.

2) De-duplication After Processing

Simultaneously, post-processing data duplication is the process where the data at

first is written to the storage media which is then followed by the analysis of

duplication along with identification of any scopes for compression opportunities.

The deduplication and compression is executed only after the data is securely stored

in the storage device. In addition to this, in the process of post-processing data

duplication the initial capacity that is required is somewhat related to the raw data

size. Simultaneously, the optimised data is then saved back to storage media. It is

done with relatively lesser space requirements in comparison to that of before data

reduction.

Post-processing dedupe is a 735 synchronous reinforcement operation that

eliminates repeated data after it has been maintained in contact with capacity. The

data that has been entered more than once is removed, and it is replaced with an

indication that is positioned toward the principal focus of the square. The post-

processing method provides customers with the flexibility to dedupe certain

remaining jobs at hand and the speed to quickly recoup the most recent

CHAPTER TWO THEORETICAL BACKGROUND

28

reinforcement without requiring water. The trade-off for this is a larger

reinforcement stockpile limit than would be required with inline deduplication [45].

Post-processing data duplication is identified as an asynchronous backup process

that is beneficial in the removal of redundant data after it is successfully written to

storage. This process provides the user with enough flexibility and independence

towards deduping specific workloads along with efficient recovery of the most

recent backup. The post-processing data duplication is found to utilise the latest

backup and is therefore found to take up more disk space in comparison to other

deduplication processes. However, the post-processing data duplication takes a

relatively lengthier processing time because of the fact that data is identified prior to

the removal of the duplicate data from the storage unit.

3) source deduplication

Source deduplication, also known as client-side deduplication, is a data

deduplication technique that occurs at the source of data generation or transmission.

In this approach, data deduplication processes are performed on the client or source

device before the data is transferred over the network to the storage destination, such

as a cloud server or backup appliance.

This technique involves identifying duplicate data blocks or chunks within the data

stream at the source device and eliminating redundant copies before transmitting the

data to the storage system. By eliminating duplicate data at the source, source

deduplication reduces the amount of data transferred over the network and stored on

the destination storage system, leading to significant savings in bandwidth and

storage capacity.

4) target deduplication

Target deduplication is a data deduplication technique that occurs at the storage

destination or target device, such as a backup appliance or storage array. In contrast

to source deduplication, which eliminates duplicate data at the source before

transmission, target deduplication identifies and removes redundant data after it has

been transferred and stored on the destination storage system.

CHAPTER TWO THEORETICAL BACKGROUND

29

In target deduplication, data deduplication processes are performed on the storage

device itself, where duplicate data blocks are identified and eliminated based on

predefined algorithms or patterns. This approach allows organizations to achieve

data reduction and storage optimization benefits without requiring changes to the

client or source devices.

5) client-side deduplication

Client-side deduplication, also known as source deduplication, is a data

deduplication technique that occurs at the source or client device before data

transmission or backup. In client-side deduplication, duplicate data blocks are

identified and eliminated locally on the client device before transferring the unique

data to the storage destination.

2.2.2 Data Deduplication strategies

Primarily, there is the record level, the square level, and the byte-level method, and

each of them may be improved for increased storage capacity.

▪ File-level data deduplication strategy: This strategy functions at the file level

and not at the sub-file level or the block level. File-level data deduplication is

a technique used for data optimization. This helps in eliminating redundancy

at the file level. This is what helps this strategy significantly save storage

space and improves the efficiency of data storage. This strategy first identifies

the duplicate files and then retains only a single instance of each unique file.

The duplicates are replaced as references and pointers to the original file. The

duplicate files are identified across the whole storage system. The duplicate

files are identified regardless of their location or format.

This technique is particularly effective where the files are frequently

duplicated. It is also effective in an environment where many similar files are

stored. For example, it will be very effective to use a file-level data de-

duplication strategy in file servers or data repositories [46]. The major benefit

of file-level data de-duplication is that it helps in reducing storage space. In

addition to that, this technique also helps to reduce backup windows,

improving backup and restore performance. This involves only unique files,

CHAPTER TWO THEORETICAL BACKGROUND

30

which makes the backup of files faster and reduces the recovery times of the

files.

These benefits help to reduce the corruption of files as the number of files gets

reduced. This definitely enhances the entire data management system. The

two steps used in this technique include

1. The system scans the storage environment, which includes analysing

the metadata and the duplicate content files. Metadata contains details

like names, sizes, creation dates, and more attributes of the file [47].

The Metadata helps to differentiate between two or more different files.

The analysis of the content involves an actual data examination within

the files.

2. The identification of the duplicate files is followed by keeping one

single copy of the file as the reference file and the other duplicate files

are saved as pointers or references to the primary file [48]. This gives

easier access to duplicate files with the help of pointers and clearly

saves storage space.

▪ Block-level data deduplication technology: This technique is different from

the file-level de-duplication technique as in this; the duplicate file is identified

at the granular level. These are called “data blocks”. The data from different

files are broken into blocks to identify duplicate data. The identified duplicate

data is then replaced with pointers or references to the single instance of the

block [49]. The three main benefits of this technique include saving storage

space, reducing backup windows, and enhancing data transfer speeds. The

data in this technique is stored in fixed or variable-sized blocks. The sizes of

these blocks range between a few kilobytes to several megabytes.

Each block identified in this technique is processed individually and the

unique hash value for each block is calculated. This hash value represents the

data within each block and hence serves as a fingerprint for accessing the data.

The significant steps in this data deduplication technique are:

1. The data from the files are broken into blocks after a thorough scanning

CHAPTER TWO THEORETICAL BACKGROUND

31

of the files.

2. The hash values are assigned to each block, which helps in easy access

to these data. This helps to find the duplicate data in these files.

3. The hash value brings forward the duplicate data and these are then

replaced with pointers or references to the single block file. This block

is called the “reference file”.

This technique helps in making the storage process efficient. Organisations can

reduce storage space by eliminating the identified duplicate files. Organisations

often use this method to store higher amounts of data in the same storage system.

This technique also helps to have an efficient backup and restore system [50]. This

happens because this technique only uses unique blocks and these are transferred

and stored as it is. This makes the backup time lesser and creates shorter backup

windows.

⮚ Block-Level Innovation

Modifications made on the inside of the file will result in the whole document having

to be stored. PPT and other documents may need to undergo minor adjustments to

their fundamental information. For instance, if a page has to be updated to display

the most recent report or the dates, this may need a complete restore of the archive.

The block level information de-duplication technology saves just one version of the

paper and the subsequent portion of the differences that have been made between

versions. The file-level innovation, which is often under a 5:1 compression ratio,

whereas the block-level storage innovation may pack the information limit of 20: 1

or even 50: 1

⮚ Evacuate file level innovation

File-level information de-duplication technology, the record is extremely little, and

the rehashing of the information by the designated authority takes practically no time

to calculate. Because of this, the method for expulsion has very little impact on the

execution of reinforcement. Due to the fact that the file is little and has a low

recurrence level, the report level handling load needed to evacuate the innovation is

also comparatively modest. A less impact on the amount of time required for

CHAPTER TWO THEORETICAL BACKGROUND

32

recovery. Remove the technical need to "reassemble" the information square by

using the square level essential file coordinating square and the information square

pointer. The record level innovation consists of a one-of-a-kind archive storage and

highlighting the document pointer, which significantly reduces the amount of time

required to rebuild.

⮚ Cloud Storage Mechanism

Every cloud has a certain amount of storage, so if start uploading duplicate

information, the storage will be lost, and dealing with data redundancy will become

a major issue. Researchers have been investigating numerous techniques to combat

this, and data deduplication is the best answer. A method called data deduplication

was developed to improve storage [77]. Different cloud service providers, including

Dropbox, Amazon S3 and Google Drive, now use this strategy. Data duplication is

prevented by making sure it is never uploaded to the cloud more than once.

A. As the amount of digital data grows, so does the need for greater storage space.

B. Traditional solutions don't have any built-in protection against duplicate data being

saved up.

C. Data De-duplication is critical for removing redundant data and lowering storage

costs.

The quantity of data generated is growing exponentially in quickly developing

digital age. The demand for more storage space has grown as more areas of life, from

social media interactions to business transactions, are becoming digitalized. This

article looks at how inadequate present storage capabilities are for keeping up with

the rate of expansion in digital data and the significance of finding a solution.

● Delete this line, comment solved.

● A Partial Solution: The increased need for storage space has a partial solution

in the form of cloud storage. Cloud service providers can offer scalable storage

options to consumers and businesses by utilising the enormous capabilities of data

centres. This method, however, has its own set of drawbacks, such as worries about

data privacy, security lapses, and dependence on outside sources [9]. Additionally,

CHAPTER TWO THEORETICAL BACKGROUND

33

the cost of storing significant amounts of data on the cloud can rise significantly,

particularly for long-term retention.

● Explosive Growth of Digital Data: The internet's rising use, the widespread

use of smartphones, and the rise of connected gadgets have all contributed to the

digital revolution's data explosion. The amount of digital data is always growing

because of all online interactions, transactions, sensor readings, and media uploads.

● New Technologies for Data-Intensive Systems: The problem with storage is

made worse by the emergence of data-intensive technologies like artificial

intelligence (AI), machine learning (ML), and big data analytics. Massive datasets

are needed for these applications in order to build models and gain insightful

knowledge. Additionally, the growing use of virtual reality, augmented reality, and

high-definition multimedia content puts extra pressure on storage infrastructure by

necessitating higher capacity and quicker data retrieval.

The lack of storage capacity is becoming an urgent issue as the digital world

develops. Finding scalable and effective storage solutions is urgent given the

exponential growth of digital data and the rising demand for data-intensive

applications. While cloud storage provides a partial solution, research into next-

generation storage systems is necessary to make sure that the storage infrastructure

can sustain the ever-growing digital world [11]. It can fulfil the increasing need for

storage space and unleash every advantage of the digital age by making investments

in technology development and promoting innovation.

The problem of redundant information has grown significantly in importance in the

era of expanding digital data. Traditional storage solutions frequently do not have

built-in duplicate data management tools. The significance of data deduplication in

eliminating redundant data and lowering storage costs is highlighted in this article.

Duplicate data refers to information that is identical and spread across different

locations in a storage system. It may be caused by a number of things, including user

error, system backups, or data replication procedures [13]. Duplicate data not only

takes up valuable storage space, but it also drives up prices, slows down data

retrieval, and uses resources inefficiently.

CHAPTER TWO THEORETICAL BACKGROUND

34

Hard disc drives (HDDs) and solid-state drives (SSDs), two common types of

traditional storage, lack built-in techniques for locating and removing duplicate data.

Organisations can considerably reduce their storage needs by getting rid of duplicate

data. However, ensuring that only one copy of each piece of information is stored,

data deduplication increases data efficiency. Enhancing data integrity means

reducing duplicate data [14]. Duplicate data can cause conflicts and inconsistencies,

jeopardising the accuracy and dependability of data that is kept. Disaster recovery

procedures might be hampered by duplicate data since it increases backup and

restore times. In today's data-driven world, adopting data de-duplication is essential

for effectively managing and maximising the value of digital data.

2.2.3 Process of Data

A method known as "data deduplication" may be used to get rid of multiple copies

of data that is repeated. You may also know it by the name Single Instance Storage.

There are two distinct methods of deduplication, which are referred to respectively

as deduplication at the file level and at the block level [50]. While deduplication at

the file level takes into consideration the whole file, deduplication at the block level

applies deduplication to data blocks using hashing methods.

CHAPTER TWO THEORETICAL BACKGROUND

35

Figure 2.2: Deduplication Flowchart [51]

The figure 2.2 deduplication flowchart effectively displayed the process of data

optimization through applying deduplication procedures. The procedure starts with

the registration process from the end of users. Users provide various primary and

well-organised information about themselves or their organisations in order to

register themselves into the cloud storage system. The successful registration takes

them to the login page of the cloud storage system. The users are required to provide

their login id and password in order to access their data stored in the database. The

login id and password is used to ensure the safety and privacy of all the stored data.

However, if the registration process of the user fails then the user is asked to re

authenticate their credentials and basic information. The successful login using the

correct credentials take the users to the upload and download section. Downloads of

the stored files require authentication from the system. Users can download the

asked files if they are authenticated to do so. However, if the user wants to upload a

file in the cloud storage then the duplication of the file will be checked. The access

is denied if any kind of duplication is found on the provided file. Cloud storage

systems grant the permission to upload any new file if no duplication is found on the

provided file.

CHAPTER TWO THEORETICAL BACKGROUND

36

2.3 Purpose of Data Deduplication

It is crucial to eliminate duplicate data within a dataset for efficient management of

data and save storage space. Therefore, it can be said that data De-duplication helps

enhance the integrity of the data while improving the system's performance as well.

In order to get an in-depth picture of the significance of data De-duplication, here

are some key points explained in details:

1) Optimization of System Storage:

After reviewing other studies on this subject, it has been understood that not only

duplicate data takes up unnecessary storage space, but also hampers the overall

system performance. Data De-duplication identifies duplicate data and files in

the device, and removes them to make space for other important data. Examples

of data De-duplication in real world scenarios can be found in backup systems,

archives, and cloud storage. These services use data De-duplication to prevent

data redundancy while improving the data retention capabilities of itself.

2) Bandwidth Conservation:

Bandwidth conservation becomes a key factor when data is to be transferred

across domestic networks. It also becomes crucial while data backup to different

locations (offsite). The Data Deduplication comes in use in this case selectively

remove repetitive data prior to the transfer. This is done so that the data that is to

be transferred is reduced in size, and only takes up space that is crucial for the

core dataset. However, this also helps in faster transfer of the data, lower

bandwidth needed for the transfer of data, and lesser network traffic.

3) Data Governance Regulations and compliance of them

Government has placed several strict regulatory compliance measures on

companies and industries regarding data handling. In such cases, data

deduplication comes into play by helping companies meet most of these

regulations. Additionally, it also helps in "data tracking" efficiently, and helps to

follow the data governance practices as prescribed.

CHAPTER TWO THEORETICAL BACKGROUND

37

4) Data integrity and Data loss:

Data De-duplication can improve the integrity of the data and confirm only one

version of each data to exist in the data set It is important to avoid any sort of

duplication of data as they can cause errors and inconsistencies. If in any

circumstances, there is data loss, data de-duplication makes the data recovery

process much simple. It also ensures that there are less risks of data corruption

and faster process of system restore.

The expenditures that are connected with duplicated data may be reduced by storage

managers with the assistance of data de-duplication. When dealing with large

datasets, it is common to find a significant amount of duplication, which drives up

the cost of storage. As an example:

● It's possible that different users' file sharing includes several copies of the

same or similar files.

● Virtualization guests may often be almost exactly the same from one VM to

the next.

● There may be some variation from one day to the next in the backup

snapshots.

The dataset or the workload on the volume will determine the amount of space that

can be saved thanks to data de-duplication. High-duplication datasets have the

potential to reach optimization rates of up to 95%, which would result in a 20-fold

decrease in the amount of storage space required. The following table provides a

summary of typical cost reductions that may be achieved by de-duplication of

different categories of material:

Table 2.1: Data De-duplication Scenario & Typical space savings

Scenario Content Typical space

CHAPTER TWO THEORETICAL BACKGROUND

38

savings

User documents Office documents, photos, music,

videos, etc.

30-50%

Deployment

shares

Software binaries, cab files,

symbols, etc.

70-80%

Virtualization

libraries

ISOs, virtual hard disk files, etc. 80-95%

General file share All the above 50-60%

2.4 Chunking Algorithm

Chunking is referred to as the process of splitting file into smaller units where

efficient chunking is one of the key elements that provides an estimation of the

deduplication performance. Chunking is important in certain applications such as

data compression, data synchronisation, as well as data duplication as it helps in

determining the duplicate detection performance of the system. Subsequently, in the

perspective of the cloud storage ecosystem and about data duplication chunking is

of two types that are fixed size and variable size. The chunking process is beneficial

in breaking the data input stream into smaller pieces or chunks where the chunking

method is the first stage of the deduplication system. A chunk is the largest physical

disc unit dedicated to storing database server data.

Chunks give managers a much larger unit to work with when allocating disc space.

An individual chunk can be up to 4 TB in size. The maximum number of chunks

allowed is 32,766. If you upgraded from a version prior to version 10.00, you must

perform the on-mode BC2 command to enable the maximum chunk size and

maximum number permissible otherwise, the maximum chunk size is 2 GB.

CHAPTER TWO THEORETICAL BACKGROUND

39

2.4.1 Storage areas made up of chunks

Dbspaces, or database spaces, act as logical storage containers in database systems,

consisting of chunks. Chunking divides the storage into manageable parts,

optimizing storage utilization and enabling flexible data management. In case of

corruption, only the affected chunk is impacted, minimizing the effect on other data.

Blobspaces are designated for large binary objects like images and videos. Chunking

breaks down these objects, enhancing data integrity and recovery. Managing large

binary data becomes more efficient as chunking ensures easier storage and retrieval

Segregated Buffer spaces store diverse data types within a single database,

categorized based on different criteria. Chunking allocates fixed-sized units,

facilitating easy access and parallel processing. It enables efficient storage utilization

and enhances database performance. Temporary spaces handle temporary data,

aiding query processing and sorting. Chunks store specific parts of temporary data,

allowing seamless management and deletion when data is no longer needed. These

specialized buffer spaces store only temporary data, like intermediate results.

Chunking optimizes storage by predetermining chunk configurations.

Figure 2.3: Chunking Algorithm [66]

Data deduplication is an emerging technology that involves the introduction of

reduction of storage use and is an important way of handling data replication in the

cloud storage mechanism. It can be mentioned here that data deduplication involves

three basic components that are chunking, hashing, and comparing hashes in order

to detect redundancy. A chunking algorithm is considered the first step in achieving

efficient data duplication ratio and throughput, certain unique hash identifiers are

implemented to draw a comparison between the chunks between the current to that

of the previously stored ones.

CHAPTER TWO THEORETICAL BACKGROUND

40

2.5 Hash Value (HV)

A hash value is identified as a numeric value of a definite length that uniquely

defines data. The hash value generally represents a large range of data in the form

of much smaller numerical values in order to make it eligible to be used with digital

signatures. The utility of hash value is significantly higher than in comparison to the

original larger value and is important in verifying the integrity of the data that has

been transmitted through non secured channels. Generally, data is hashed at a

definite time along with ensuring its value is protected at the same time.

Different hash function values are allocated to various slices or chunks of data and

after comparing a hash value (HV) with all other slices, the updated hash values are

returned. This procedure is reiterated until the value convergence of assignment to a

state of no change. A numeric number of a predetermined length that may be used

to uniquely identify data is referred to as a hash value. Hash values are employed in

digital signatures because they can represent enormous quantities of data with much

smaller numeric values. This makes them useful [40].

Hashes are generally identified as the output of a hashing algorithm where the

primary objective of these algorithms is to produce a unique, fixed-length string –

the hash value, for a given piece of information or data. The hashing algorithm

prevents the reconstruction of a file’s content and therefore, validates and evaluates

the content of two different files along with maintaining privacy and without

acquiring any information about the contents. Hash values are significant to security

searches and are important in evaluating the queries related to a particular dataset

over an existing network, it also helps in the early identification of threats.

A hash value (HV) usually requisites a particular number of bits, and when

subsequent chunks of data search for and locate chunks with the same hash value;

the chunks are viewed as duplicate data and aren’t kept in the data de-duplication

(DD) procedure. If the hash value (HV) is unique and not existing among previously

recorded values, the hash value is saved, and the matching data chunk is examined

and saved in databases (DB).

CHAPTER TWO THEORETICAL BACKGROUND

41

Figure 2.4: Hash value

Cloud storage has evolved as one of the leading options to store huge amounts of

data; however, the hash value is also the representation of a longer document from

which it was computed. The contents of a file is processed through the

implementation of a cryptographic algorithm where a unique numerical value is

generated and identified as a hash value. Hash values are important as they can be

used to assess data of various sizes into a limited fixed size value. Hash values are

deterministic along with being efficient in adapting to any change in the input

thereby incorporating it in the output.

CHAPTER TWO THEORETICAL BACKGROUND

42

2.6 Dynamic Prime Chunking

The process flow of the chunking method, in addition to its primary and essential

qualities. Dynamic Prime Chunking is a sophisticated data management technique

designed to optimize storage efficiency and enhance data retrieval processes. Unlike

traditional chunking methods, DPC dynamically adjusts the size of data chunks

based on the content being processed. This adaptability ensures that chunks are of

optimal size, preventing both underutilization and excessive fragmentation of

storage space. By intelligently resizing chunks according to the data's nature, DPC

improves storage utilization, accelerates data access, and minimizes storage wastage.

2.6.1 Dynamic Prime Chunking Design

The Dynamic Prime Chunking does not have a fixed size of sub problems, or chunks,

and reduces computational cost. They are subjected to dynamic changes that depend

on various heuristics. In simpler words, those algorithms can modify the size of the

chunks depending on various factors, including the input number's properties and

computational resources available onsite.

Figure 2.5: Fixed size chunking of data packet

Dynamic prime chunking algorithm aims to maintain a balance between memory

usage of the data, and the "computational efficiency" [52]. Breaking the problematic

bigger chunk into smaller chunks will dynamically reduce their size, making the

processing much more efficient, and also reduce memory space.

CHAPTER TWO THEORETICAL BACKGROUND

43

Step 1: Data Input Stream

Strat from I, I is the initial byte position of the data input string.

Step 2: Calculate the dynamic window size dw based on prime number.

Step 3: Finding the maximum byte position.

M is threshold value if, Chunk breakpoint determine the following two condition

1. The interval [I, N] is empty, or the value of M is greater than the values of all

bytes in the interval.

2. The value of M is not less than the values of all bytes in the interval [O, C]

Step 4: Declaring chunk boundary.

Return C as breakpoint I' is first byte of the remaining input string.

The version of AE that uses the dynamic prime chunking technique has been made

better. DPC is primarily applicable to two crucial qualities, namely position and

value. As can be seen in Figure 2.5, the DPC design process consists of four distinct

components. First, start by reading the data input stream coming from the source.

Begin at point I, where I is the beginning byte location of the data input stream. Start

from there. Following this, we go on to step 2 of the process, where we use steTp 3

to compute the size of the dynamic window (DW) using prime integers. DPC makes

use of two windows: one with a configurable size, and another with a dynamic

changing size. The algorithm decides whether the lowest or maximum value of the

input stream is the maximum value or the maximum value to use as the threshold

(M). The procedure will decide what the threshold value is, and it will always be the

highest or most extreme number. The third phase consists of determining the

maximum value for a byte and locating the border of a chunk based on the two

requirements that are listed below:

(1) To ensure that the interval [I, N] is also empty, or that the highest threshold

value of M is greater in significance than any of the byte values included

inside [I, N].

CHAPTER TWO THEORETICAL BACKGROUND

44

(2) In the dynamic window with a changeable size, the extreme value M must be

greater than the value of every byte that falls between the coordinates [O, C].

In order to ensure that the highest byte point is represented as the maximum local

value, it is necessary to assess whether or not the first byte satisfies the requirements

described above, which are related with a threshold value. On the other hand, the

maximum byte location has been established, and DPC has declared the byte that is

most to the right to be the chunk breakpoint for the right-side window [52]. The

algorithm will return the breakpoint location C once the chunk boundaries have been

specified in step four once they have been declared. After that, the sequence that

begins at the first byte location continues with the letter I. Repeat the methods from

the previous section until you locate the very last boundary of a chunk in the

incoming data stream.

2.6.2 Workflow of DPC

Figure 2.6: The workflow of DPC algorithm

In the example shown in Figure 2.6, the first byte position, which is indicated by the

letter A1, continues to advance in the correct direction until it reaches the end of the

CHAPTER TWO THEORETICAL BACKGROUND

45

byte position B. The threshold value M1 is used to partition the whole data stream

into several parts. The location of the leftmost byte, which comes before the

threshold, must thus be a window of variable size. M1 refers to the gap that exists

between each successive byte, beginning with A1 and ending with X1. As the right

motion, the byte position is moved forward once again, this time from Y1 to B1. As

stated in Chunk 1, DPC is also a dynamic window with an adjustable width and

height. The precise procedure is carried out from chunk 1 all the way through chunk

N. The reason why there is a dynamic window is because the point at which the

chunks split is constantly changing in size. AE, on the other hand, just the left side

has a varied size; the right section remains the same throughout. As a result, the

effects will be felt greater in AE. In order to circumvent this problem, the DPC

technique that we've presented makes use of a variable window size. This helps to

get rid of the lengthy chunk sequence and boosts the deduplication throughput.

2.7 Content Defined Chunking (CDC) Algorithms

The term "content-defined chunking" (CDC) refers to a technique for dividing files

into chunks of varying lengths, with the cut points being determined by the inherent

characteristics of the files themselves. In contrast to chunks with a set length, chunks

with a variable length are less susceptible to byte shifting.

Due to its strong redundancy detection ability, Content-Defined Chunking, also

known as CDC, has been playing a pivotal role in data deduplication systems for the

better part of the last 15 years. Existing CDC-based techniques, on the other hand,

result in a significant increase in the amount of CPU overhead. This is because the

chunk cut points are determined by calculating and evaluating the rolling hashes of

the data stream byte by byte.

The technique of chunking divides a single file into many smaller files that are also

called pieces. Chunking is significant in some applications because it impacts the

performance of the system in terms of duplicate detection. Some examples of these

applications are remote data compression, data synchronisation, and data

deduplication. The term "content-defined chunking" (CDC) refers to a technique for

dividing files into chunks of varying lengths, with the cut points being determined

by the inherent characteristics of the files themselves. In contrast to chunks with a

CHAPTER TWO THEORETICAL BACKGROUND

46

set length, chunks with a variable length are less susceptible to byte shifting [53]. As

a result, the likelihood of discovering duplicate chunks both inside a file and across

files is raised as a result of this. However, in order to locate the cut spots, CDC

techniques need extra calculation, which might be computationally costly for

particular applications.

A content-defined variable-length chunking method [52] is offered as a solution to

the issue of byte shifting in fixed-length algorithms. This algorithm reads files as a

data stream and creates chunks according to the Rabin fingerprint of a window data.

It has been suggested that the Rabin method use two divisors instead of only one in

order to overcome the problem that it is difficult to locate the cut-off point. Of the

two divisors, one is simple to do and the other is the complete opposite. The most

difficult divisor needs to be used right from the start when trying to locate an

appropriate stopping point. If the data cannot be fulfilled within a lengthy data

period, then it will be replaced by the easier one in order to prevent huge chunks of

data wherever possible. In addition to this, the Rabin fingerprint suffers from an

issue known as size variation of pieces. A technique known as LMC, or Local

Maximum Chunking, has been suggested as a solution to this problem . The method

comes to the conclusion that a cut-off point should be established if the greatest value

of a window's data is located in the centre of the window. This allows the programme

to avoid the time-consuming process of generating the Rabin fingerprint. At the

same time, the size of the chunks may be restricted because the window size can be

set, and the distribution of the chunk size is reasonably constant. This is because the

window size can be set. AE [48] and RAM [35] are two techniques that have been

presented in order to expedite the process of validating the window data. Increasing

the speed of chunking may be accomplished by modifying the validation technique

of window data; this process will be discussed in more detail later on. In addition,

the concept of parallel computing is used to the algorithms that are used for data

chunking in order to make the process move more quickly.

2.8 Types of Chunking Algorithm

2.8.1 Rabin chunking Algorithm

Input: input file,file; default value,Value;length of sliding window, W; Output: cut

point,I;

CHAPTER TWO THEORETICAL BACKGROUND

47

function RabinChunking(file,Value, W)

i=1

index=0

while(byte=readByte(file))

array[index%W+1]=byte

if array.length>=W then

else

if hashValue(array,index, W)==Value then

return i

end if

continue

end if

i=i+1

end while

end function

The Rabin chunking algorithm is also popularly known as "Rabin Fingerprinting

Algorithm" which was developed back in 1981, by Michael O. Rabin. This system

is very helpful when it comes down to breaking the data into smaller, and fixed size

chunks. This breakdown of the data depends on their data content. Therefore, it is

clearly suggested that it is a technique used in de-duplicating data.

This algorithm apparently creates a "rolling hash function". This function then

proceeds to calculate each of the data block's hash value, which is most popularly

known as a fingerprint of the data as well [54]. This fingerprint plays a crucial role

in identifying duplicate data chunks on the data, which are similar to one another.

Therefore, it is understood that any small change made in the data itself can result in

different hash values.

Sliding window approach is used in this type of algorithm to perform chunking. An

initial data window starts the process, and calculates that window's hash value at the

same time After the calculation is done, the algorithm shifts the window position by

one byte, only to calculate the hash value for the new position of the window. The

goal of this is for the hash value to satisfy certain criteria.

The Rabin Fingerprinting Algorithm is capable of identifying duplicate data chunks

within a larger dataset in a more efficient way. [56] This comes in use in the case of

CHAPTER TWO THEORETICAL BACKGROUND

48

backing up specific chunks of data to save space in the storage device. The Rabin

chunking algorithm can compare the hash values in order to recognise the duplicate

data chunks even if data blocks are somewhat dissimilar.

However, one of the biggest disadvantages of this algorithm is that it can give false

results [55]. For instance, it might show the result as false positive, which can happen

when coincidently, two completely different data blocks produce the same hash

value, therefore they can be flagged as duplicate data. Similarly, false negative

results occur when unfortunately, two of the same blocks of data show different hash

values.

2.8.2 LMC Chunking Algorithm

Output: cut point,I;

function LMCChunking(file, W)

i=1

start=1

while(byte=readByte(file))

if byte<=max.value then

if i==max.position+w and max.position>=start+w then

end if

start=max.position+1

return max.position

else

max.value=byte

max.position=i

end if

i=i+1

end while

end function

The LMC, or Lesk's Measure of Cohesion Chunking Algorithm was Introduced in

1986 by Michael Lesk. It is essentially a language processing technique, which can

detect meaningful chunks from a text. This technique calculates the Cohesion scores

of every word present in a text . This calculation is primarily done by examining the

overlap of the context of one word to its immediate next word. These contexts are a

group of words in a window, which has a fixed size around the main word.

CHAPTER TWO THEORETICAL BACKGROUND

49

The use of this algorithm is mainly found in extracting information or parts of speech

tagging, etc. The identification of valuable chunks and extracting them from a text

allows in-depth understanding of the chunk's content. Thus, the LCM Algorithm can

assess the relationship shared between words by analysing their context, which

results in accuracy in identifying chunks.

2.8.3 Asymmetric Extremum (AE) Chunking algorithm

Algorithm for AE chunking Input: input file, file; size of fixed window, W; Output:

cut point,I;

function AEChunking(file, W)

i=1

while(byte=readByte(file))

if byte<=max.value then

if i==max.position+w then return i

end if

else

max.value=byte

max.position=i

end if

i=i+1

end while

end function

This algorithm looks for phrases, which appear to be important. This decision is

based on external factors such as the high level of information of the word, in

comparison to its neighbours. AE chunking algorithm reduces traffic redundancy to

be more efficient. After Tokenization, the features of each word, such as syntactic

patterns and parts of speech tags are computed.

The algorithm then proceeds to group words with best external features to form

something meaningful. Therefore, the AE chunking algorithm group’s words that

have the appearance of being informative to make a meaningful phrase, and this is

in use while extracting keywords from a text or retrieving information.

2.8.4 RAM Chunking Algorithm

function RAMChunking(file, W)

i=1

CHAPTER TWO THEORETICAL BACKGROUND

50

while(byte=readByte(file))

if byte>=max.value then

if i>w then

return i

end if

max.value=byte

max.position=i

end if

i=i+1

end while

end function

"RAM or Rapid Asymmetric Maximum Chunking Algorithm” is a helpful approach

for the identification and segmentation of handwritten text in a phrase [56]. The

RAM chunking algorithm was developed so that the accuracy of the segmenting of

the handwritten characters increases [54]. In order to be able to achieve this goal, the

RAM chunking algorithm uses a group of image processing systems, known as

"threshold-based image processing" It helps to overcome challenges posed by the

overlapping strokes of the character, their irregular sizes, etc. The use of

asymmetrical chunking (smaller chunk) is Done by detecting the physical features

such as strokes and slants.

2.9 Secure Hash Algorithm

Secure Hash Algorithm (SHA) are a kind of cryptographic function that is used to

keep data secure. It transforms data using a hash function, which is a method

composed of bitwise operations, modular additions, and compression functions. The

hash function then returns a fixed-length string that has no resemblance to the

original. These methods are meant to be one-way functions, which means that once

they've been translated into their corresponding hash values, it's almost hard to

reverse the process. SHA-1, SHA-2, and SHA-3 are three algorithms of interest, each

of which was built with ever better encryption in response to hacker attempts.

Because of publicly publicised weaknesses, SHA-0, for example, is now outdated.

[56]

CHAPTER TWO THEORETICAL BACKGROUND

51

SHA is often used to encrypt passwords since the server just has to maintain track

of a single user's hash value rather than the actual password. If an attacker steals the

database, they will only obtain the hashed functions and not the real passwords,

therefore if they enter the hashed value as a password, the hash function will turn it

into another string and prohibit access. Furthermore, SHAs display the avalanche

effect, in which changing a few characters in an encrypted string generates a large

change in output; or, conversely, vastly dissimilar sequences give comparable hash

values. As a result of this consequence, hash values do not provide any information

about the input text, such as its original length. Furthermore, SHAs are used to

identify data tampering by attackers; for example, if a text file is slightly altered and

hardly apparent, the modified file's hash value will be different from the original

file's hash value, and the tampering will be rather obvious.

There are several advantages and disadvantages of using Secure Hash Algorithm-1.

The primary advantage of using SHA-1 algorithm is it reduces the risks of brute

force attack by the hackers. It is useful for storing the passwords, as it is a very slow

process. It is also used to compare codes or files in order to identify the

“unintentional only corruptions”. It also has the capability to replace the SHA-2

when the matter of interoperability issue is noticed with the legacy codes. However,

it also suffers from various drawbacks including it is less secure as compared to other

algorithms. The collision is extremely easy to find in the SHA-1. The length of the

key in the SHA-1 is too short to resist the potential attacks. It is not suitable for uses

other than storing the passwords, as it is slow in nature.

CHAPTER TWO THEORETICAL BACKGROUND

52

Figure 2.8: Hash function

2.9.1 SHA – 1

It is a 160-bit or 20-byte long hash-based function-based encryption technique that

is used to mimic the MD5 algorithm, which has been around for a while. The NSA,

or National Security Agency, conceived and developed the specific algorithm, which

was intended to be part of the crucial component- Digital Signature Algorithm

(DSA). Weaknesses in cryptographic methods were discovered in SHA-1; the

encryption standard was eventually discontinued and was hardly used.

SHA-1 generates a 160-bit hash value or message digests from the inputted data

(data that needs

encryption), which is similar to the MD5 hash value. To encrypt and protect a data

item, it performs 80 rounds of cryptographic procedures. SHA-1 is used in a number

of protocols, including:

● Transport Layer Security (TLS)

● Secure Sockets Layer (SSL)

● Pretty Good Privacy (PGP)

● Secure Shell (SSH)

● Secure/Multipurpose Internet Mail Extensions (S/MIME)

● Internet Protocol Security (IPSec)

SHA-1 is widely employed in cryptography applications and contexts where data

integrity is critical. It is also used to index hash functions, as well as to detect data

corruption and checksum issues.

The SHA-1 or the “Secure Hash Algorithm 1” is considered the cryptographic

algorithm that includes the input and produces a 160-bit hash value. This hash value

is called the “message digest” which usually is rendered as a kind of hexa-decimal

CHAPTER TWO THEORETICAL BACKGROUND

53

number that is 40 digits longer. It is also considered to be in the “US Federal

Information Processing Standard'' and was said to be designed by the “United States

National Security Agency” [57]. The SHA-1 is presently considered to be insecure

since the year 2005. The giant technical browsers which include Google, Microsoft,

Mozilla and Apple have prevented accepting SHA-1 SSL certificates by the year

2017. The requirements to calculate the graphical value is included in Java where

the “MessageDigest class” is utilised under the package for “java.security”.

This class offers various cryptographic hash functions, including MD2, MD5,

SHA1, SHA224, SHA256, SHA384, and SHA512, which can be utilized to compute

the hash value of a given text. These algorithms can be initialized using the static

method "getInstance()". Once an algorithm is selected, the message's digest value is

calculated, and the results are returned as a byte array. To convert this byte array

into a readable format, the class utilizes "BigInteger". This conversion enables the

representation of the signal, which is then further converted into hexadecimal format

to obtain the expected result from the message digest.

These algorithms could be used in several forms such as:

1) Cryptography: The primary application of SHA-1 is to provide protection to the

communication from being interrupted by parties from outside. It generates

singular, irreversible and fixed size values. The data integrity can also be

confirmed through the comparison of this hash value with the original hash value

[57]. It also makes it easy in confirming that the data that is used is not tampered

or changed with the manner during the transmission of the data.

2) Digital Forensics: The hash value of a file that includes the digital evidence can

be manufactured making use of the SHA-1 algorithm in the digital forensics.

This also helps in ensuring that the evidence has not been changed during the

process of investigation using the hash value as a type of proof [58]. It also

proves that the file is not altered if the hash value for the original file and the file

of evidence matches.

2.9.2 SHA-512

 There are multiple applications of hash functions in the digital environment.

The mechanism applies to internet security, block chains and others. The hashing

CHAPTER TWO THEORETICAL BACKGROUND

54

algorithm constitutes a one-way program (). The primary advantage of such a type

of algorithm is it cannot be restructured and decoded. Therefore, if any third party

gets access to the server, the entire data remains unreadable. The Hashing algorithm

holds the following properties in brief.

a. Mathematical - It maintains strict rules to design the algorithm.

b. Uniform - All hashing programs are uniform in nature. Whatever be the length

of the data it produces a fixed length of output.

c. One way - Once it is created, it will be nearly impossible to decode it.

Therefore, it is secure for programmers as well as users.

d. Consistent - A hashing program only one process that is compressing the

given data.

SHA-512 works in the following manner -

1) Input Formatting It has an input size limitation. SHA - 512 can not execute an

input of any size. The entire message constitutes three parts namely - original

message, padding bits and the size of original message. The message will be

executed as blocks of 1024 bits.

2) Hash Buffer Initialization It is already mentioned that the process works with

a block of 1024 bits and collects from the previous blocks. However, it

generates a problem for the first 1024-bit block, therefore, it is unable to use

the result from the previous block. This problem can be solved by providing a

default value to the first block in order to start the process. The intermediate

results will be used in the next block. Therefore, the result should be stored

somewhere for later use. This will be done by the hash buffer.

3) Message Formatting It takes one block of 1024 bits at a time and message

formatting is done on it. The actual execution is done by using two things that

is a block of 1024 bits and the result from the previous processing.

4) Output After the message-processing phase we get a 512-bit hash value for

the original message. From each block, intermediate results are used for

processing the next block. When the execution of the final bit of 1024 is

finished, we get the result of the SHA 512 algorithm.

CHAPTER TWO THEORETICAL BACKGROUND

55

SHA-512 is a function of the cryptographic algorithm SHA-2, an extension of the

well-known SHA-1.

SHA-512 is essentially similar to Sha-256, except that it uses 1024 bit "blocks" and

accepts a maximum length string of 2128 bits as input. In addition, SHA-512 differs

from Sha-256 in terms of algorithmic alterations.

A cryptographic hash (also known as a 'digest') is a kind of ‘signature' for a text or

data file. For a text, SHA-512 provides a nearly unique 512-bit (32-byte) signature.

The source code is available below.

This is a companion script to the SHA-256 script (which has more information). This

is a reference implementation, as close to the NIST specification as possible, to aid

in understanding the algorithm (section numbers relate the code back to sections in

the standard); it is not at all optimized (in timing tests, using Chrome on a low-to-

middle Core i5 PC, this script will hash a short message in around 0.4 - 0.6 ms;

longer messages will be hashed at a speed of around 0.5 - 1 MB/sec).

Because SHA-512 is based on 64-bit unsigned integers, which JavaScript does not

natively handle, it is more difficult to implement in JavaScript than SHA-256. For

an optimised implementation, I've developed a long library for UInt64 operations;

there would be more efficient ways of accomplishing this.

 2.10 Dataset

The research utilizes two primary datasets, each offering unique insights and data

characteristics. These datasets are integral for conducting comprehensive

evaluations and comparisons of various cloud storage solutions, providing a robust

foundation for the benchmarking process.

CHAPTER TWO THEORETICAL BACKGROUND

56

2.10.1 Multimedia and OS Datasets

Multiplicative-Divisive Probabilistic Congestion Control (MDPC) is a congestion

control algorithm used in computer networks. It is designed to control the rate at

which data is transmitted over a network to avoid congestion.

To implement MDPC, the researcher will need the following:

1. Operating System: MDPC is a congestion control algorithm that can be

implemented on any modern operating system, such as Windows, Linux, or macOS.

2. Network stack: The MDPC algorithm operates at the transport layer of the

network stack. It requires access to the congestion control module of the network

stack to be able to control the rate at which data is transmitted.

3. Multimedia support: MDPC is designed to handle multimedia traffic, which

includes audio and video streams. Therefore, the operating system and network stack

must support multimedia traffic.

4. Hardware requirements: The hardware requirements for MDPC depend on the

size and complexity of the network. In general, MDPC can be implemented on any

modern computer hardware with a network interface card (NIC).

5. Software requirements: To implement MDPC, the researcher will need to install

the congestion control module that supports the MDPC algorithm. This module can

be a part of the operating system or a separate software package that needs to be

installed.

To implement MDPC, the researcher needs a modern operating system and network

stack that support multimedia traffic, as well as hardware with a network interface

card. Additionally, he or she need to install a congestion control module that

supports the MDPC algorithm.

The researchers have conducted several studies on MDPC and have found that the

alternative systems that are asymmetric in nature other than the traditional systems

impact the “McEliece cryptosystem”. The system of McEliece is considered to be

based on the codes of “QC-MDPC” that is considered to have an extremely

CHAPTER TWO THEORETICAL BACKGROUND

57

interesting contribution since it has excellent performance on the limited sources and

embedded systems. This code also extends the concept of lower density with a parity

check that makes use of a certain matrix that checks the parity with the moderated

sparse [44]. This also leads the procedure to a significantly degraded performance

of error correction. The MDPC decodes certain instances that attempt to decode the

complicated coding. The random parity check matrix and the random error factor

are considered to be generated through the computer corresponding syndrome. It

prints the instances every five seconds that are generated and distributed with the

number of iterations it will be required to decode.

The MDPC codes are considered the LDPC codes of greater density than the usually

adopted applications for telecommunication. This also leads to worse means of error

correcting capability. However, the cryptography based on the MDPC code is not

interested in correcting several errors but only a specific number of errors that ensure

and the level of security that is a condition, which is satisfied by the codes of MDPC.

The benefits of using the MDPC code include many benefits. The MDPC codes

reduce the distinguishing problems related to McEliece, which includes the problem

of decoding the codes that are linear [44]. The attacks of message against the scheme

is also required in reducing the problem along with the security of providing the

scheme that has the benefit of reliance on a single and well-studied problem

regarding the coding theory

CHAPTER THREE

Proposed Mechanism

CHAPTER THREE PROPOSED MECHANISM

59

CHAPTER – 3

Proposed Mechanism

3.1 Introduction

 This chapter presents the research methodology for the proposed model for cloud

IoT environment. The efficient algorithm for constrained IoT devices was covered

in detail in this chapter. It began with an overview of lightweight efficient cloud

storage and its inherent difficulties, which were presented in sections 3.1 and 3.1.2.

The overview of the efficient algorithm then provided in section 3.4, highlighting

the two-step process of IoT device authentication and resource-efficient message

encryption. The efficient AES-based algorithm's implementation pseudocode is

shown, and it describes the encryption and decryption procedures as they are

described in sections 3.5 and, respectively.

3.2 Design Research Methodology

 The Design Research Methodology for thesis on IoT and cloud storage focuses

on developing an efficient, scalable cloud storage system for IoT environments.

approach involves a comprehensive examination and integration of various

components. Firstly, analyse the dataset and simulation tools used, ensuring

compatibility with IoT requirements. The operating system is chosen for optimal

performance in processing IoT data. A significant part of methodology includes the

adoption and modification of algorithms, notably Content-Defined Chunking (CDC)

and standard chunking algorithms, tailored to enhance data processing and storage

efficiency. The system architecture is designed with specific considerations for IoT

applications, ensuring seamless integration and operation. Additionally, we assess

software requirements, benchmarking standards, and design goals to ensure research

meets the evolving needs of IoT environments. This methodology aims to create a

CHAPTER THREE PROPOSED MECHANISM

60

robust, adaptable cloud storage solution, addressing the unique challenges in IoT

data management.

3.3 MDPC Algorithm and Difference with DPC

 MDPC (Multiplicative-Divisive Probabilistic Congestion Control) and DPC

(Deterministic Probabilistic Congestion Control) algorithms both aim to manage

network congestion, yet they differ in their approach. MDPC operates by

probabilistically increasing or decreasing the congestion window size based on

network conditions, utilizing multiplicative and divisive factors to adjust the window

size dynamically. In contrast, DPC employs a deterministic approach, where the

congestion window size is adjusted based on predetermined thresholds and

probabilities, without the multiplicative and divisive factors utilized in MDPC.

While MDPC offers adaptability to varying network conditions through probabilistic

adjustments, DPC provides deterministic control over congestion window size

changes, potentially offering more predictable behavior in certain network scenarios.

3.3.1 Dynamic Programming with Clustering (DPC) Algorithm

 The DPC algorithm combines dynamic programming with clustering

techniques to reduce the computational complexity of solving optimization problems

with large state spaces. It involves the following steps:

1) Clustering: Initially, the state space is divided into clusters based on certain

similarity measures. Clustering helps in grouping similar states together, reducing

the overall size of the state space. Like DPC, the state space is initially partitioned

into clusters using clustering techniques. Clustering helps in reducing the complexity

of the problem by focusing on smaller, manageable subsets of the state space.

2) Dynamic Programming within Clusters: Within each cluster, dynamic

programming techniques are applied to find the optimal solution. By solving smaller

CHAPTER THREE PROPOSED MECHANISM

61

subproblems within clusters, the computational complexity is reduced compared to

solving the entire problem space.

3) Inter-Cluster Communication: Information exchange or communication

between clusters is facilitated to ensure coherence and consistency in the final

solution. Inter-cluster communication can involve sharing boundary information,

optimal policies, or other relevant data.

3.3.2 Multi-Point Dynamic Programming

 Dynamic programming techniques are applied to each cluster independently to

find the optimal solution within each cluster. The dynamic programming process

considers multiple decision points or stages, allowing for sequential decision-

making.

3.3.2.1 Inter-Cluster Communication

 Similar to DPC, communication between clusters is essential to ensure

coherence and consistency in the final solution. Inter-cluster communication

involves sharing information about optimal policies, boundary conditions, or other

relevant data. This method involves a detailed comparison and contrast of existing

cloud storage systems, examining their various features and performances. The core

of this methodology is the development and application of a specialized

benchmarking tool designed for assessing the efficiency, flexibility, and user-

friendliness of cloud storage systems. In the initial stage, the research involves

gathering data about various cloud storage solutions currently available. This step

includes examining the infrastructure of these systems, understanding their data

organization, storage capacities, scalability, and the nature of their virtualized

storage environments. This examination helps in identifying the key characteristics

that impact the performance and cost-effectiveness of these services. The research

CHAPTER THREE PROPOSED MECHANISM

62

moves to a critical comparison of these cloud storage solutions. This comparison is

not merely theoretical; it involves practical analysis based on specific parameters

such as storage capacity, scalability, ease of access, and cost-efficiency. The focus

is on how these systems manage and maintain data, their ability to scale up or down

based on user requirements, and the overall user experience in terms of managing

and accessing stored data.

 An essential part of the methodology is the creation of a benchmarking Concept.

This Concept is designed to test operational cloud storage systems, evaluating them

on various performance metrics. The tests conducted using this tool are critical in

assessing the efficacy of the cloud storage systems under real-world conditions.

These tests are aimed at determining the systems' efficiency in data management and

retrieval, their response to varying storage demands, and their cost-effectiveness.

The research methodology also includes analyzing open-source cloud storage

systems through code analysis to obtain reliable results. This aspect is crucial as it

provides insights into the architecture and design principles of these systems,

contributing to a deeper understanding of their operational efficiencies. The research

methodology is a blend of theoretical study and practical evaluation, aimed at

providing a comprehensive analysis of cloud storage systems and developing an

effective benchmarking tool for their assessment.

CHAPTER THREE PROPOSED MECHANISM

63

Figure 3.1: Flowchart Methodology

3.4 The Proposed System

 The MDPC algorithm is a cloud storage mechanism that is designed to efficiently

manage and store data in IoT environments. This algorithm is based on a

probabilistic approach that enables efficient utilization of cloud storage resources

while ensuring high reliability and availability of data. Multiplicative-Divisive

Probabilistic Congestion Control (MDPC) is a congestion control algorithm used in

computer networks to manage the flow of data packets and prevent congestion. It

operates by dynamically adjusting the congestion window size based on network

conditions. MDPC encompasses various subtypes or kinds, each with its specific

characteristics and approaches to congestion control.

 Multiplicative Increase Divisive Decrease (MIDD): In this subtype of MDPC,

the congestion window size is increased multiplicatively when the network is

operating efficiently and there are no signs of congestion. However, when

congestion is detected, the window size is reduced divisively to alleviate the

congestion and prevent further packet loss. MIDD aims to strike a balance between

exploiting available network capacity and avoiding congestion.

CHAPTER THREE PROPOSED MECHANISM

64

1. Adaptive MDPC: Adaptive MDPC is a subtype that adjusts its congestion

control parameters dynamically based on observed network conditions. It

continuously monitors network metrics such as round-trip time (RTT), packet

loss rate, and available bandwidth to adapt its multiplicative and divisive

factors accordingly. By adapting to changing network conditions, adaptive

MDPC aims to optimize network performance and minimize congestion-

related issues.

2. Probabilistic MDPC: Probabilistic MDPC introduces randomness into the

congestion control process by probabilistically increasing or decreasing the

congestion window size. Instead of deterministic rules, probabilistic MDPC

utilizes probabilities to adjust the window size, allowing for more flexibility

and adaptability in response to varying network conditions. This approach

helps prevent synchronization effects and can lead to more stable network

behavior.

3. Delay-based MDPC: Delay-based MDPC focuses on controlling congestion

based on the observed network delay. It adjusts the congestion window size

proportionally to the measured delay, aiming to maintain an optimal level of

delay while avoiding congestion. By considering delay as a congestion

indicator, delay-based MDPC can effectively manage congestion in networks

with variable latency.

Overall, MDPC and its subtypes provide a flexible and adaptive approach to

congestion control in computer networks. By dynamically adjusting congestion

window sizes based on network conditions, MDPC algorithms aim to optimize

network performance, minimize packet loss, and prevent congestion-related issues.

Each subtype of MDPC offers unique features and capabilities, allowing network

CHAPTER THREE PROPOSED MECHANISM

65

administrators to choose the most suitable variant for their specific networking

environment and requirements.

Figure 3.2: Design Research Mechanism

Programming language: MDPC can be implemented in a variety of programming

languages, including C, C++, and Python [59]. The choice of language would depend

on factors such as performance, ease of development, and existing code base.

Required libraries: The MDPC algorithm may require certain libraries, such as

(Multiple Precision Arithmetic Library) for high-precision arithmetic or OpenSSL

for cryptographic operations . Configuration and optimization: The performance of

the MDPC algorithm can be improved through various configuration and

optimization techniques, such as parallel processing, vectorization, and code

optimization. These techniques would depend on the specific implementation and

hardware used. Overall, running the MDPC algorithm requires a standard computer

CHAPTER THREE PROPOSED MECHANISM

66

system with modern hardware, an appropriate operating system and programming

language, and any required libraries and configurations for optimal performance.

 The MDPC algorithm works by dynamically adjusting the storage capacity

allocation for each IoT device based on its data usage patterns and storage

requirements [73]. It achieves this by maintaining a probabilistic congestion control

mechanism that ensures that the available storage resources are optimally utilized.

3.4.1 MDPC Algorithm Works in Two Phases

1. Probabilistic Allocation: In this phase, the algorithm assigns storage capacity

to each device based on a probabilistic model that takes into account the

device's data usage patterns and storage requirements. The algorithm calculates

the probability of congestion for each device and assigns storage capacity

accordingly.

2. Dynamic Adjustment: In this phase, the algorithm monitors the data usage

patterns of each device and dynamically adjusts its storage allocation to ensure

optimal utilisation of the available resources. The algorithm also considers the

reliability and availability requirements of the data and ensures that the storage

capacity allocation is sufficient to meet these requirements.

 The MDPC algorithm has several advantages over traditional cloud storage

mechanisms. First, it optimises the utilisation of cloud storage resources, which leads

to reduced storage costs. Second, it ensures high reliability and availability of data

by dynamically adjusting storage allocation based on data usage patterns. Finally, it

is highly scalable and can handle large numbers of IoT devices with varying data

usage patterns.

CHAPTER THREE PROPOSED MECHANISM

67

Overall, the MDPC algorithm is an efficient cloud storage mechanism for IoT

environments that can help organisations reduce storage costs and ensure high

reliability and availability of data.

3.5 Simulation Used

 A study has been implemented that focuses upon encryption algorithms

implemented by researcher Habeeb, Ahmed. (2018). Multiplicative-Divisive

Probabilistic Congestion Control (MDPC) algorithm is a variant of the Additive-

Increase Multiplicative-Decrease (AIMD) algorithm. It is used to control the rate of

data transmission in computer networks to avoid congestion [76]. MDPC adds a

probabilistic component to the AIMD algorithm to reduce the chances of congestion.

In this algorithm, the congestion window size is multiplied or divided by a factor

depending on the network conditions.

 To perform configurations and settings of the MDPC algorithm, the researcher

will use the following algorithm and code:

Algorithm (3.1): Multi-Dimensional Partial Congestion Control (MDPC)

//Initialize Variables

1: Set cwnd (Congestion Window Size) to initial congestion window size

Set threshold to initial threshold value.

Set ack_counter to 0

Set nack_counter to 0

2: While true

3: if received_ack():

4: Increment ack_counter by 1

5: end

6: if ack_counter ≥ threshold

7: Multiply cwnd by 2 (Multiplicative Increase)

8: Reset ack_counter to 0

9: Reset nack_counter to 0

10: end

11: Else if received_nack()

CHAPTER THREE PROPOSED MECHANISM

68

12: Increment nack_counter by 1

13: end

14: if nack_counter ≥ threshold

15: Divide cwnd by 2 (Divisive Decrease)

16: Reset ack_counter to 0

17: Reset nack_counter to 0

18: Set threshold to calculate_new_threshold(threshold)

19: Send data with congestion window size cwnd

20: end

21: end

Where:

cwnd be the current Congestion Window Size.

threshold be the threshold value for determining congestion control actions.

ack_counter be the count of received acknowledgments.

nack_counter be the count of received negative acknowledgments (NACKs).

Upon receiving an acknowledgment:

• If ack_counter > threshold:

cwndnew = cwnd x 2 (Multiplicative Increase).

Upon receiving a negative acknowledgment:

• If nack_counter > threshold:

cwndnew = cwnd/2 (Divisive Decrease).

Update threshold using a function to calculate a new threshold value.

• Send data using the updated cundnew

 The MDPC algorithm helps in providing a number of options that include securing

the cryptographic exchange over the channel that is public with secure form of

messaging and digital signature. Most of these types of systems are included in the

number of the problems related to theory such as the factorization of the larger

number with the discrete form of algorithm in the elliptic curve. Strong form of

CHAPTER THREE PROPOSED MECHANISM

69

cryptography is considered extremely essential for providing a secured electronic

device for the consumers. These are the suspicious positions after the sleeping of the

tentative position of each of the candidates. The “Block Rate of Error (BLER)” is

also evaluated by simulation of the computer and the resultant represents the bit-

flipping algorithm that provides lower BLER that is compared in order to exist

within the algorithms of decoding.

3.6 MDPC Algorithm

 MDPC (Multiplicative-Divisive Probabilistic Congestion Control) Algorithms

play a key role in the benchmarking process. They are designed to analyze cloud

storage systems from multiple dimensions, such as speed, reliability, and scalability.

These algorithms provide a comprehensive understanding of how each cloud storage

system performs under various conditions and workloads.

3.6.1 Mathematical Model:

1) Objective Function

Let f (x) be the objective function to be optimized, where x is the vector of decision

variables. The objective is usually either to maximize or minimize f(x).

2) Constraints

The optimization problem may have constraints that define feasible regions for the

decision

variables. These constraints can be represented as equality or inequality constraints,

denoted as

g(x) < 0 or h(x) = 0 (3.1)

3) Decision Variables

Let x = (x1, x2,...,n) represent the decision variables. These variables determine the

solution to the optimization problem.

4. State Space

CHAPTER THREE PROPOSED MECHANISM

70

The state space represents all possible states of the system at any given point in time.

Each state

is associated with a set of decision variables and constraints.

Mathematical Formulation:

Let's denote the following:

• S: State space representing all possible states of the system.

• A(s): Set of feasible actions or decisions available in state s.

• T(s, a): State transition function representing the probability distribution of

transitioning from state s to state s' after taking action a.

• R(s, a): Immediate reward or cost associated with taking action a in state s.

* V*(s): Optimal value function representing the maximum expected cumulative

reward from state s to the terminal state.

Q*(s, a): Optimal action-value function representing the maximum expected

cumulative reward from taking action a in state s and then following the optimal

policy.

The dynamic programming recursion for MPDP can be formulated as follows:

V*(s) = max {R(s, a) + Σ T(s,a, s') · V' (s')} (3.2)

The optimal action-value function Q*(s, a) is given by:

Q*(s, a) = R(s, a) +ΣT(s, a, s′) · V* (s') (3.3)

In the project, the Multiplicative-Divisive Probabilistic Congestion Control (MDPC)

algorithm serves as a pivotal component in optimizing data transmission and

managing network congestion effectively. Integrated within the project's

mathematical model, MDPC dynamically adjusts the congestion window size based

on real-time network conditions. Utilizing a probabilistic approach, the algorithm

detects congestion by calculating the probability of packet congestion, thus enabling

proactive measures to mitigate potential congestion events. By employing both

CHAPTER THREE PROPOSED MECHANISM

71

multiplicative and divisive factors, MDPC ensures adaptive control of the window

size: decreasing it by a larger multiplicative factor in the presence of congestion and

increasing it by a smaller additive factor during efficient network operation. This

dynamic adaptation to network conditions, including round-trip time, packet loss

rate, and available bandwidth, enables MDPC to maintain optimal performance and

efficiency. Evaluated within the project's benchmarking environment, MDPC

undergoes rigorous testing and comparison with other congestion control algorithms

to assess its effectiveness and suitability across various network scenarios. Overall,

MDPC significantly contributes to the project's objectives by enhancing multimedia

data processing and communication through efficient congestion management and

optimization strategies.

3.6.2 Properties MDPC Algorithm

 The Multiplicative-Divisive Probabilistic Congestion Control (MDPC)

algorithm is a type of congestion control algorithm used in computer networks to

manage traffic congestion. Here are some key properties of the MDPC algorithm:

Multiplicative and Divisive Feedback: The MDPC algorithm uses both

multiplicative and divisive feedback mechanisms to adjust the congestion window

size . Multiplicative feedback increases or decreases the window size by multiplying

it by a factor greater or less than one, while divisive feedback divides the window

size by a factor greater than one.

1. Probabilistic Control: The MDPC algorithm is probabilistic in nature, meaning

that it uses probability to determine the congestion window size . This approach

is more effective in managing congestion in networks with high levels of

variability and uncertainty.

2. Feedback Signal Estimation: The MDPC algorithm estimates the feedback

signal based on the network conditions, such as the round-trip time, packet loss

CHAPTER THREE PROPOSED MECHANISM

72

rate, and available bandwidth . It then uses this estimate to adjust the congestion

window size.

Figure 3.3: IoT Cloud Benchmark Architecture

3. Fairness: The MDPC algorithm aims to provide fairness to all the flows

sharing the network resources [51]. It achieves this by adjusting the

congestion window size based on the number of flows and the amount of

traffic each flow generates.

CHAPTER THREE PROPOSED MECHANISM

73

4. Stability: The MDPC algorithm is designed to be stable and avoid oscillations

in the congestion window size . This is achieved through the use of appropriate

feedback mechanisms and control parameters.

5. Scalability: The MDPC algorithm is scalable and can be used in large-scale

networks with a large number of flows. It can efficiently manage traffic

congestion in such networks without compromising on performance.

Overall, the MDPC algorithm is an effective congestion control algorithm that

provides fairness, stability, and scalability in computer networks.

3.6.3 Key Properties When Use MDPC in IoT Environment

 When considering the use of the Multiplicative-Divisive Probabilistic

Congestion Control (MDPC) algorithm in an efficient cloud storage mechanism for

an IoT environment, some key properties are:

1. Adaptability: The MDPC algorithm is adaptable and can adjust to changing

network conditions . In an IoT environment, where the number and type of

connected devices can vary significantly, the MDPC algorithm can

dynamically adjust the congestion window size to accommodate the changing

traffic load.

2. Low Latency: In an IoT environment, low latency is critical for real-time

applications . The MDPC algorithm is designed to achieve low latency by

estimating the feedback signal based on the round-trip time, packet loss rate,

and available bandwidth.

3. Energy Efficiency: IoT devices often have limited battery life, and energy

efficiency is critical [45]. The MDPC algorithm can help reduce energy

consumption by avoiding unnecessary retransmissions caused by congestion.

4. Robustness: The MDPC algorithm is robust and can withstand network

disturbances such as link failures, node failures, and network partitions [48].

CHAPTER THREE PROPOSED MECHANISM

74

In an IoT environment, where nodes can be added or removed frequently, the

MDPC algorithm can adapt to the changes and maintain network stability.

5. Scalability: The MDPC algorithm is scalable and can be used in large-scale

IoT environments with a large number of devices. It can efficiently manage

traffic congestion and provide fair access to network resources without

compromising on performance.

6. Security: In an IoT environment, security is a critical concern. The MDPC

algorithm can be used in conjunction with secure communication protocols to

ensure the integrity and confidentiality of data transmitted over the network.

Overall, the MDPC algorithm is well-suited for use in an efficient cloud storage

mechanism for an IoT environment, providing adaptability, low latency, energy

efficiency, robustness, scalability, and security [47].

Here's a comparison table summarizing the overhead associated with the

Multiplicative-Divisive Probabilistic Congestion Control (MDPC) algorithm

compared to other commonly used congestion control algorithms:

Overhead

Type

Overhead Description

Header

Overhead

The MDPC algorithm requires additional header information to be

added to each data packet to facilitate feedback and probabilistic

control. This header overhead is generally small and can be

managed with appropriate packet size optimization techniques.

Feedback

Overhead

The MDPC algorithm uses feedback mechanisms to adjust the

congestion window size based on network conditions [42]. This

feedback involves the exchange of feedback packets between the

sender and receiver, which can add some overhead to the network

and increase the packet delay. However, the feedback overhead is

generally small and can be optimized with appropriate feedback

control parameters.

CHAPTER THREE PROPOSED MECHANISM

75

Probability

Calculation

Overhead

The MDPC algorithm uses probabilistic control to determine the

congestion window size [46]. This involves the calculation of

probability distributions, which can add some overhead to the

network in terms of processing power and memory usage. However,

this overhead is generally small and can be optimized with

appropriate probability distribution estimation techniques.

Fairness

Overhead

The MDPC algorithm aims to provide fairness to all the flows

sharing the network resources. To achieve this, it requires some

overhead in terms of monitoring and controlling the traffic flows to

ensure that they are all treated fairly. This fairness overhead is

generally small and can be optimized with appropriate fairness

control parameters.

Overall, the data input stream overhead associated with the MDPC algorithm is

generally small and can be managed with appropriate optimization techniques. The

overheads related to feedback, probability calculation, and fairness control are

generally manageable and can be optimized with appropriate control parameters and

network optimization techniques.

Compared to some other congestion control algorithms, MDPC has some overhead

due to the nature of its probabilistic and feedback-based approach. Here are some

key overheads associated with the MDPC algorithm:

Computational Overhead: The MDPC algorithm requires frequent estimation of

network conditions such as round-trip time, packet loss rate, and available

bandwidth. This estimation involves some computational overhead in terms of

processing power and memory usage.

Feedback Overhead: The MDPC algorithm uses feedback mechanisms to adjust the

congestion window size, which involves the exchange of feedback packets between

the sender and receiver [56]. This exchange can add some overhead to the network

and increase the packet delay.

CHAPTER THREE PROPOSED MECHANISM

76

Probability Calculation Overhead: The MDPC algorithm uses probabilistic control

to determine the congestion window size [46]. This involves the calculation of

probability distributions, which can add some overhead to the network in terms of

processing power and memory usage.

Fairness Overhead: The MDPC algorithm aims to provide fairness to all the flows

sharing the network resources. To achieve this, it requires some overhead in terms

of monitoring and controlling the traffic flows to ensure that they are all treated

fairly.

Overall, the MDPC algorithm has some overhead associated with its feedback-

based, probabilistic, and fairness-oriented approach. However, these overheads are

generally reasonable and can be managed with appropriate control parameters and

network optimization techniques. Compared to some other congestion control

algorithms, such as TCP Reno, MDPC is generally considered to have lower

overhead and better performance in networks with high levels of variability and

uncertainty.

3.7 Enhanced Congestion Control Mechanism

 To modify the Dynamic Prime Chunking (DPC) algorithm into the

Multiplicative-Divisive Probabilistic Congestion Control (MDPC) algorithm, the

following changes can be made:

Introduce a window size: In the MDPC algorithm, a window size is introduced to

limit the number of packets in flight. The window size determines the amount of

data that can be transmitted without acknowledgement from the receiver. The

window size is adjusted dynamically based on the current network conditions.

Additive-increase, multiplicative-decrease: The window size is updated based on the

success or failure of packet transmission. If a packet is successfully transmitted, the

window size is increased by a small additive factor. If a packet is lost, the window

CHAPTER THREE PROPOSED MECHANISM

77

size is decreased by a larger multiplicative factor. This is similar to the Additive-

Increase/Multiplicative-Decrease (AIMD) algorithm used in TCP congestion

control.

Figure 3.4: Additive-Increase/Multiplicative-Decrease

Introduce a probabilistic approach: In the MDPC algorithm, a probabilistic approach

is used to adjust the window size. The probability of a packet being marked as

congested is calculated based on the window size and the congestion level of the

network [67]. The higher the window size, the higher the probability of a packet

being marked as congested. This probabilistic approach ensures that the window size

is adjusted in a stable and efficient manner.

Introduce a multiplicative-divisive component: In the MDPC algorithm, a

multiplicative-divisive component is introduced to adjust the window size. If a

packet is marked as congested by the network, the window size is decreased by a

larger multiplicative factor. This helps to prevent congestion collapse in the network.

Overall, the MDPC algorithm is a modification of the DPC algorithm that introduces

a probabilistic approach and a multiplicative-divisive component to congestion

CHAPTER THREE PROPOSED MECHANISM

78

control [55]. This enables the algorithm to adjust the window size dynamically in

response to changing network conditions, leading to better network performance and

reduced packet losses.

3.8 Analysing the MDPC's behaviour for the CDC's

Multiplicative-Divisive Probabilistic Congestion Control (MDPC) is a congestion

control algorithm that aims to regulate the congestion window size of a network

transport protocol, such as TCP. In terms of the essential characteristics of

congestion control, MDPC exhibits the following behaviors:

1. Responsiveness: MDPC is designed to be responsive to changes in network

conditions, including changes in available bandwidth and congestion levels. It uses

feedback from the network in the form of packet loss and delay to adjust the

congestion window size accordingly.

2. Stability: MDPC is designed to be stable and avoid excessive oscillations in the

congestion window size. It achieves this by using a probabilistic approach to

adjusting the window size, where the probability of increasing or decreasing the

window size is based on the current congestion level.

3. Fairness: MDPC is designed to be fair in its allocation of network resources among

competing flows. It achieves this by using a multiplicative decrease and divisive

increase approach to adjusting the congestion window size, which penalises flows

that cause congestion and rewards flows that reduce congestion.

4. Efficiency: MDPC is designed to be efficient in its use of network resources. It

achieves this by dynamically adjusting the congestion window size based on the

current network conditions, which allows it to maximize network utilization without

causing congestion.

Overall, MDPC exhibits the essential characteristics of congestion control by being

responsive, stable, fair, and efficient in its regulation of network congestion.

CHAPTER THREE PROPOSED MECHANISM

79

However, the specific behavior of MDPC may depend on the implementation and

configuration of the algorithm in a particular network environment.

Figure 3.5: Implemented Model

The figure 3.5 illustrates the comprehensive integration of the MDPC

(Multiplicative-Divisive Probabilistic Congestion Control) algorithm within cloud

storage system. At its core, the Cloud Storage System serves as the repository for

multimedia data, facilitating efficient data management. The Data Retrieval Module

ensures seamless access to stored data, while the Encryption Module enhances data

security through encryption techniques. Additionally, the Deduplication Module

optimizes storage space by identifying and eliminating duplicate data entries. The

MDPC Algorithm Integration is pivotal, harmonizing the algorithm's functionality

with the system's architecture. Key Generation and Performance Simulation

Modules play essential roles, generating encryption keys and evaluating system

performance, respectively. Through a User/Application Interface, stakeholders

CHAPTER THREE PROPOSED MECHANISM

80

interact with the system, ensuring user-friendly access and management of

multimedia data.

The MDPC codes are also designed using the binary cyclical through construction

of the polynomial parity check that is obtained directly from the idempotent code

using the cyclotomic cosets. The design of the MDPC codes include a lower

complexity for the encoding and decoding scheme with the practical utilisation of

the study. It also proposes a lower complexity of SISO diversity decoder [66]. The

AD decoder includes the use of a small number of parity checks that are redundant

and it attempts to minimise the operations that are not included in the regular

algorithm. The decoding algorithms initially begins with decoding the length in with

soft input vector that makes use of the regular algorithm sum product with (m * n)

that is redundant according to the matrix of parity check that consists of the decoder

that operates over the MDPC codes.

3.9 Theoretical Comparison

 Rabin is a well-known duplication technique for use with CDC algorithms;

nonetheless, it has a very poor chunking throughput and a substantial amount of

chunk size volatility. The TTTD broke up data into smaller pieces, but it was unable

to pinpoint where data duplication was occurring to account for the larger chunk

sizes. In addition, since the processing time has increased, it adds to the overhead

that is associated with indexing. In the end, the chunking AE method was superior

to the Rabin in terms of the number of low-entropy strings it removed. We suggest

using the dynamic prime chunking algorithm as a means to improve the throughput

and take the performance to an even higher level.

● Low chunking throughput and time consumption are problems with

Rabin.

CHAPTER THREE PROPOSED MECHANISM

81

● The TTTD algorithm adds a minimum and maximum threshold to lessen

chunk volatility. The threshold is applied using a backup divisor. For bigger

chunks, data deduplication cannot be properly recognised. Additionally, the

longer processing times result in extra expense for indexing.

● Deduplication efficiency is also much greater in AE. Additionally, the

computational cost is greatly reduced, and the tiny chunk variance is raised.

To reduce the computational cost in the Multiplicative-Divisive Probabilistic

Congestion Control (MDPC) algorithm, the following techniques can be employed:

● Use Fixed Probability: Instead of calculating the probability of packet

marking based on the window size and congestion level of the network, a fixed

probability can be used [45]. This eliminates the need for computing the

probability for each packet, which reduces the computational cost.

● Limit the number of packets marked: Instead of marking every congested

packet, only a limited number of packets can be marked. This reduces the

number of computations required to mark packets and also reduces the amount

of feedback required from the network.

● Use Sampling: Instead of monitoring every packet in flight, a sampling

approach can be used to monitor a subset of packets. This reduces the amount

of monitoring required and reduces the computational cost.

● Use Approximation Techniques: Instead of using exact calculations,

approximation techniques can be used to estimate the probability of packet

marking. This reduces the computational cost while still providing a

reasonable estimate of the probability.

● Reduce the number of parameters: The MDPC algorithm has several

parameters that need to be adjusted, such as the window size, the additive and

CHAPTER THREE PROPOSED MECHANISM

82

multiplicative factors, and the probability of packet marking [66]. By reducing

the number of parameters, the computational cost can be reduced while still

maintaining good network performance.

Overall, these techniques can help to reduce the computational cost of the MDPC

algorithm while maintaining good network performance. It is important to strike a

balance between computational cost and network performance, and these techniques

can help achieve that balance.

3.10 SHA -1 - Method Used to Eliminates Redundancies

 The SHA -1 fingerprint technique is used by the Cryptographic Hash Function

method to remove duplicate data and reduce redundancies at the full file or chunk

level. The data deduplication procedure divides the incoming information into a

variety of fragments.

SHA-1 is the original 160-bit hash function has a similarity to the earlier MD5

algorithm.

Destor uses the SHA-1 cryptographic hash algorithm in order to locate and get rid

of the superfluous piece. The system is subjected to experimental testing in order to

investigate the effects that the different chunk sizes and throughput have. The

processing time as well as the chunk time that is executed in the system is the

performance.

Steps Followed

● Padding of Bits

● Append Length

● Divide the input

● Initialize variable

● Process blocks

CHAPTER THREE PROPOSED MECHANISM

83

The technological overlap between the database redundancy, database backup and

often lead to certain confusion however, each has a separate role to play in order to

safeguard and streamline the data used. The backup is considered significant in order

to create a duplicate copy of the data at a particular time point, which is ideally kept

as multiple historic copies. The redundancy also establishes a straight copy for the

entire system, which is considered ready to take over if the system originally fails.

The backup also offers a certain level of redundancy that is neither considered the

solution that is standalone [67]. The primary copy of the data that is selected reduces

the data redundancy that is seen with the aim of retaining the data in the long term.

All the data is continent within the backup that is ultimately ending to achieve that

is really considered to be the solution for the backup but a complement to provide

an optimised data storage procedure.

The incremental and differential backups also help in filling up the gaps in between

the full backups and includes storing any type of changes to the data. It is also

required as a fraction of the cycles in the CPU with the bandwidth and the storage

space down the data loss risk is considered greater than the full backup restoring the

times, which are considered slower [61]. Elimination of data is considered

significant and it reduces the amount of the data that is required to be transferred or

to be stored by eliminating and identifying both inter-object and intra-object. These

are duplicated elements of data with the pointer all the reference to the unique copy

of data.

The data redundancy increases the disparities. It includes preserving the data within

the multiple areas that can cause the disparity of the information, which fails in

updating across all the locations. This can also happen if the real storage location

changes by the copies do not. It also creates certain opportunities for corruptive data.

Data corruption occurs if something damages the information during transferring the

CHAPTER THREE PROPOSED MECHANISM

84

data or creating the procedure. This also means that storing several copies of similar

data can provide more opportunities for data corruption. The costs are also

considered for more data to be preserved. The data return density is considered costly

to be maintained and to be interesting whether it is considered intentional or

accidental.

The various ways that can be used in order to reduce the data redundancy, that is

seen to include normalising the database. The normalisation of the database includes

arranging the data into the database in an efficient manner ensuring the elimination

of redundancy. This procedure also shares the database of the company that contains

the details, which are read similarly throughout the entire record [61]. The

normalising data also includes range in the tables and columns of the database in

order to ensure that these are correctly and forced with their dependency. The various

companies are considered to have certain special sets of the criteria about data

normalisation, which are considered different approaches for data normalisation.

3.11 Tool for Cloud Storage in IoT

3.11.1 Software Requirements

When designing and developing software, it is best practice to first thoroughly

understand the product's intended use. Here is a rundown of everything you'll need

to meet BenchCloud's functional specifications:

● Authentication and authorization for cloud services.

Consumer identification is confirmed through confirmation, and their permissions

and privileges are established through authorisation. Despite both of these phrases

have a similar sound; they serve different but just as important functions in

protecting systems and information [68]. It is essential to comprehend the

differences. They establish a system's reliability when taken together.

● Support various cloud storage services and product vendors.

CHAPTER THREE PROPOSED MECHANISM

85

A “CSP (cloud service provider)” is a third-party firm that offers expandable

hardware and software, such as cloud-based processing, storage, structure, and

programming services, that organisations may use on request across an internet

connection [69]. Data is sent over a communication link, usually through the web,

and kept in distant data centres where it is up-to-date, controlled, and eventually

made accessible to subscribers as part of a cloud storage structure.

● Support various file operations, such as sharing, downloading, and

uploading.

Installing a “File Transfer Protocol (FTP)” client is the most popular approach for

transmitting content to the website. Files may be sent coming from a single device

(individual system) to a different one (webserver) via “FTP (File Transfer

Protocol)” [61]. Anyone is able to transfer (upload, download) files from a single

system to a different machine using FTP software that resembles an archives editor.

● Support a variety of file generators to produce files with various patterns.

MPS (Mathematical Programming System) manages an index of file formats, for

every that connects an alphabetical facility using any number of naming designs.

These kinds of documents are used for expressing linguistic-specific capabilities

(such as “syntax annotation” and “code estimation”) in files embodying different

dialects and techniques [62]. Every aspect of applicable naming sequence is included

in the directory of file formats by default, yet it may add fresh file varieties for

language-specific folders and modify the names of the file sequences that go with

current file formats.

● Assistance with multithreaded operations

A program or computer’s “operating system (OS)” that supports numerous users

simultaneously despite necessitating numerous copies of the software to execute on

a device is known as multithreading. Several inquiries travelling an identical person

CHAPTER THREE PROPOSED MECHANISM

86

can be handled via multithreading as well. Most operating systems offer combined

“kernel-level threads” and threads created by users [69]. Solaris may be one of these

instances. Different threads operate concurrently in the identical platform in this

particular approach.

● Compile benchmarking results into statistics.

Through comparing a business's accomplishments to that of other people, and

comparable businesses, anyone may determine whether, there is an achievement

discrepancy, which can be filled by enhancing its own efficiency. Observing other

businesses may show how long it is needed to boost an organization's productivity

and establish a stronger position in the sector. The company may seek to increase

productivity exponentially by discovering points at which it wishes to make

improvements and measuring its present standing compared to rivals [61]. Through

applying benchmarking in such a way, organisations have been able to surpass their

rivals and raise the standard of excellence.

● Automatically record and preserve benchmarking results.

The “Symanto Insights Platform” analyses every feedback and summary's wording

to determine if that writer is endorsing the business disparaging the business, or

using a tone, which is neutral. A “Net Promoter Score (NPS)” is calculated by

subtracting the opponents from the marketers. An excellent NPS is a sign of devoted

and satisfied consumers [62]. The “Symanto Insights Platform” connects to popular

online ratings and social networking sites like Amazon, Trustpilot, and Google

Reviews to make it simple to quickly collect and evaluate countless language inputs.

● Record network packets while benchmarking is being done.

The speed of transmitting data connecting two computers installing “Performance

Test” needs to be tested using the “PassMark Advanced Network Test”, which

happens to be a component of “Performance Test”. The storage device will be

CHAPTER THREE PROPOSED MECHANISM

87

among the devices, which will remain idle while it anticipates an internet link [70].

Any TCP/IP connectivity option is compatible with the internet sample evaluation

including Ethernet, wireless networking (WiFi), local area networks (LAN), wide

area networks (WAN), cable modems, dial-up modems, and ADSL. Exceptionally

fast gigabyte Ethernet connectivity may be benchmarked according to the

application's optimisation for minimal CPU time usage [70].

● Able to test cloud storage systems' native clients and web APIs.

An API, or application-programming interface, for cloud computing, interfaces a

natively installed software to an online-based database so that users can transfer and

receive content as well as manipulate the data held there. Similar to disk-based

storage, a cloud-based memory framework is essentially another prospective

medium for the programme [63]. A cloud API is unique based on the data storage

provider it is intended to support. An internet-based archiving provider could. For

instance, provide an API that can generate, gather, and destroy items on that system

in addition to carrying out similar item-related operations [70]. A file preservation

API supports actions like sending and receiving items and distributing documents

with many individuals at the component and category layers.

3.12.2 The specifications for a benchmarking tool for cloud storage systems

The global rise of cloud computing along with the development of many cloud

storage systems have been built with the objective of providing decentralised and

reliable file storage. Therefore, it is important to be well aware of their specific

features and performances along with the ways through which it could be optimally

used. The market witnesses an exponential rise in cloud storage systems nowadays,

and therefore certain guidelines could be instrumental in choosing the appropriate

system that can potentially satisfy the requirements. [60] The storage systems are

CHAPTER THREE PROPOSED MECHANISM

88

found to have more or less similar functions and therefore springs up the requirement

of benchmarking it.

These days, there are a great number of cloud storage solutions available, and there

are always new companies entering the market. As a result, we need some direction

to pick the proper solution that will provide the highest level of satisfaction for

needs. We need to evaluate these cloud storage systems since the performance of the

systems is a major concern that we need to take into account, and because many

cloud storage systems share similar duties, this is why we need to compare them.

The following are some examples of probable situations when it may be beneficial

to have a benchmark.

❖ Select the quickest cloud storage solution for regular usage

Suppose a user is going to give any cloud storage system a try so that he may store

his data in the cloud and synchronise the information across the computers in his

home and office. The customer's primary concern is that the service should be able

to upload and download files as quickly as feasible. A benchmarking has to be done

in order to establish which cloud system has the greatest performance when it comes

to the uploading and downloading of files. This is necessary since different cloud

systems have different network bandwidth and different locations for their data

centres.

Certain aspects should be borne in mind prior to choosing the ideal cloud storage

system such as the storage location as the physical location of a cloud server can

potentially affect the recovery and the performance. Simultaneously, there could be

issues regarding compliance or regulatory requirements on data storage locations

therefore, the decisions regarding locations should be based on the importance of the

data, authorisation and cost. [61] In addition to this, issues regarding security are of

top concern when it comes to cloud storage and therefore it should be emphasised

CHAPTER THREE PROPOSED MECHANISM

89

that while the protection of the data is the responsibility of the cloud service provider

the user also is responsible to maintain security guidelines while transferring data on

cloud server.

Additionally, performance evaluation is yet another important factor in the process

of finding the appropriate cloud service. Certain performance related aspects such

as response time, processing time, bandwidth, latency, CPU, infrastructure, RAM

and so on are critical in the process of choosing cloud storage. In addition to this, the

viability of integrating along with other applications should also be prioritised.

Therefore, prior to selecting the cloud storage “Application Program Interface

(APIs)” should be assessed. [63] In addition to this, the compatibility of the cloud

server with the existing applications as well as storage devices should be checked in

order to ensure the ease of accessibility.

❖ Find out how to use a cloud storage system as a backend storage system

for web and mobile apps

Many of the web applications that we use today store the data of their users in the

user's own personal cloud system, as opposed to storing the data in a dedicated server

that is maintained by the application's developer. This is made possible by the

development of SaaS and mobile computing. These kinds of web apps that are hosted

in the cloud come with a few distinct benefits. To begin, the creator of the

programme does not have to keep any dedicated storage servers running, which

means that the overall cost may be significantly lowered. Second, the fact that the

data is saved in the user's own cloud space, which is maintained by a reliable cloud

storage service provider, allows the user to have peace of mind regarding their data.

This, in turn, will make the application more appealing to users who place a high

priority on the security of their data. Thirdly, the data that is saved in the cloud is

able to take use of certain additional features offered by the cloud, such as the ability

CHAPTER THREE PROPOSED MECHANISM

90

to share and synchronise files. Site441, a web application that is built on Dropbox

and has the ability to convert Dropbox files into websites that are available to the

public, is one example of this kind of programme. As the developer of an application

that makes use of a cloud storage service, he may need to be aware of the most

effective technique to make use of the service. For instance, while uploading data to

the cloud, is it possible to make advantage of multithreading? If the answer to that

question is affirmative, then how many different threads should be employed to

provide the highest possible performance? Should the data be divided up into many

files of a lower size before it is uploaded if we want the uploading of enormous

amounts of data to go as smoothly as possible? In order to provide answers to such

issues, a benchmark is often seen as being beneficial for evaluating the levels of

performance achieved by using various cloud storage service utilisation

methodologies.

❖ Analyse the effectiveness of Cloud Storage Systems for a certain use case

The vast majority of the cloud storage solutions that are available to us today were

developed for typical, day-to-day activities such as the casual archiving of images,

audio tracks, and documents. However, being a cloud storage system with a broad

range of applications, it is possible to utilise it for purposes other than the typical,

everyday ones. It is feasible, for instance, to utilise a cloud storage service as the

backend storage system of an Internet of Things thesis with multiple sensors that

constantly take data from the environment and transfer it simultaneously to the

backend. This particular use case differs from others in that it involves

simultaneously uploading a huge number of little files that have been generated in

enormous quantities. A benchmark is always required in order to investigate whether

or not a cloud-based storage system can be used in a certain situation and to evaluate

its performance.

CHAPTER THREE PROPOSED MECHANISM

91

In a nutshell, doing benchmarks on cloud storage systems is beneficial in a variety

of different ways. In point of fact, we are able to do ad hoc benchmarking manually;

but, doing so will need a significant amount of time, and the procedure itself will be

difficult to replicate. In addition, if one has to carry out sophisticated benchmarks,

such as multithreaded uploading with random file creation, it is often impossible to

avoid the need of developing scripts and programming. Because of these drawbacks

of manual benchmarking, an automated benchmarking tool is the key to improving

the efficacy of benchmarking jobs. This is the motivation for the creation of

BenchCloud, which was developed specifically for this purpose.

3.11.3 System Architecture Goals

a. Flexibility

Flexibility in BenchCloud refers to its adaptability to a wide range of benchmarking

needs. This adaptability is crucial because benchmarking tasks vary greatly in their

objectives and methodologies. To achieve this, BenchCloud is designed with high

configurability and extensibility. Configurability allows users to make detailed

adjustments to benchmarking parameters, such as selecting the cloud storage system

to test, defining the operations (like uploading or downloading files), setting the

number of operations, and determining the number of threads for execution.

Extensibility, on the other hand, ensures that BenchCloud can evolve to include new

functionalities or support new cloud services without the need for extensive

modifications to its existing components. This aspect of flexibility is especially

important in cloud computing, where the ability to customize applications and access

services from anywhere with an internet connection is highly valued. The cloud’s

popularity has surged due to its ease in data access and storage, coupled with the

capability to scale resources and swiftly adapt to consumer demands.

b. Usability

CHAPTER THREE PROPOSED MECHANISM

92

Usability in BenchCloud is about providing an intuitive and accessible user

experience. Recognizing that not all users have a background in Python, despite

BenchCloud being developed in this language, the system uses configuration files

for customization. These files allow users to easily modify almost every aspect of a

benchmark’s settings without needing extensive technical knowledge. This approach

to usability is particularly significant in cloud computing, where a diverse range of

consumers and service providers often find the plethora of options overwhelming.

With BenchCloud, usability is enhanced by simplifying the configuration process,

making it more approachable for a wider audience. This feature is vital in helping

users navigate the complexities of cloud services and make informed decisions,

especially when selecting resources like virtual machines (VMs) for deployment.

Figure 3.6: System Architecture of Bench Cloud

Advantages that are unique and obvious for each cloud client, as well as cloud

service providers, are what is driving the increase in the use of cloud computing.

Consumers now find it more difficult to select a cloud provider due to the growth in

both the number of operators and the type of services they deliver [67]. A difficulty

for internet service providers is also presented by the variety of alternatives for

constructing a cloud infrastructure, including cloud administration tools and various

 Cloud storage devices

Dropbox API drivers
Local FS ….. Google

drive

….. Operators Upholders Downloaders

Traffic capturer File generators Logger Confloader
Benchmarking runners Threats

CHAPTER THREE PROPOSED MECHANISM

93

networking and storage techniques. Considering choosing “virtual machines

(VMs)” to use for the deployment of an implementation, asset benchmarking might

be useful. Performance benchmarking is crucial to comprehend the dependability

and volatility of the cloud-based services delivered [71].

3.11.4 System Architecture

Bench Cloud utilizes an architecture that is layered. As can be seen in Figure 3.5, it

is composed of three primary layers.

CHAPTER THREE PROPOSED MECHANISM

94

A. The API Driver Layer

(a) Test via web APIs

(b) Test via synchronization client

Figure 3.7: (a), (b) Two styles of test architecture

The Application Programming Interface (API) Driver layer is responsible for

providing communication end points to cloud storage providers. It provides cloud

service wrappers that the Operators layer may use to activate cloud services. A cloud

service wrapper establishes communication with cloud storage services by using

RESTful APIs, and it offers features such as service authentication and

authorization, the acquisition of file metadata, file uploading and downloading, file

Cloud storage services

A

P

I

Bench

cloud

Tester’s computer

Cloud storage services

A

P

I

Tester’s computer

Tester’s computer

 Bench

Cloud

Scan folder

CHAPTER THREE PROPOSED MECHANISM

95

sharing, and other similar features. The "uploading" and "downloading" of files to

and from the tester's local file system is handled by a specialised driver known as

the "Local FS driver." The Local FS driver, in contrast to other drivers, does not

utilize online APIs that are accessed from cloud storage services. Instead, it simply

performs standard file copy operations inside the confines of the local file system.

In the event that you do not want to test against online APIs but rather to the native

clients of some cloud storage services, you will need to make use of a local file

system driver. The synchronisation client for these kinds of systems runs on the

users' computers and synchronises the users' local data (often inside a designated

synced folder) with the cloud.

By "uploading" files to the synchronized folders and letting the synchronization

client handle the processing and actual uploading operation, can study the client in

some ways and see what kinds of optimization it engages in. Such a client may have

interesting features that cannot be discovered by testing against web APIs directly.

The high-level testing architecture may be split into two different forms, as

illustrated in Figure 3.6, depending on whether a web API or client is to be evaluated.

B. The Operators Layer

The Operators Layer serves as an intermediary between the user-facing applications

and the API Drivers layer, translating high-level actions into specific API calls. This

layer encapsulates the complexity of interacting with various cloud storage APIs by

providing a unified interface for common operations such as uploading and

downloading files. By doing so, it abstracts away the idiosyncrasies of individual

cloud storage providers, allowing developers to write code that is agnostic to the

underlying cloud service. Developers can leverage the Operators Layer to build

applications without the need for deep knowledge of the specific API details for each

cloud storage service. This not only speeds up the development process but also

CHAPTER THREE PROPOSED MECHANISM

96

enhances the portability of applications across different cloud environments. The

general-purpose tools within this layer are designed to be flexible and extensible,

enabling them to support a wide range of cloud storage options and new features as

they are released by cloud providers. The Operators Layer promotes a modular

architecture where new functionalities can be easily integrated. It is engineered to

handle error checking, retries, and other resilience strategies, thus ensuring reliable

file operations. This layer plays a crucial role in the scalability and maintenance of

cloud storage applications, as it simplifies the process of updating or swapping out

API Drivers without significant changes to the application logic.

C. The Benchmarking Runner Layer

The task of parsing and loading configuration files and running the benchmark

depending on the configuration falls within the purview of the Benchmarking

Runner Layer. The logger is in charge of meticulously recording all of the precise

actions and time spent while running benchmarks. When doing benchmarks for

uploading files, benchmarking runners often utilizes a tool called a file generator to

generate files depending on specified setup. There are four basic types of file

generators that provide various file content patterns:

⮚ Random File Generator. It generates files with unpredictable content

that are difficult to compress well and very unlikely to share the same

content as other created files.

⮚ Identical File Generator. A succession of identical files is created using an

identical file generator. It is crucial for evaluating a cloud storage system's file

deduplication function.

⮚ Sparse File Generator. It produces files with little material. Content that has

repeated strings is said to be sparse. A high compression rate may be used to

effectively compress files created by a sparse file generator. A crucial

CHAPTER THREE PROPOSED MECHANISM

97

component of evaluating a synchronisation client's file compression capability

is the sparse file generator.

⮚ Delta File Generator. A delta file generator creates a number of identically

contented files that are all the same size. The contents of the remaining

portions of the files are random and not similar. A synchronisation client's

delta encoding functionality must be tested using the Delta File Generator.

In order to capture and dump network packets during a benchmark, a trac capturer

is included in the benchmarking layer. The resultant dump file's data format, PCAP6,

is one that is widely used for recording network packets and can be read and analysed

by a variety of packet capture and analysis programmes, including Wireshark7. The

PCAP format keeps detailed records of the packets created, allowing for use in post-

analysis to examine the characteristics of the network traffic.

3.11.5 Cooperation with other tools

As mentioned in the previous section, BenchCloud offers a simple method for

evaluating cloud storage systems and can track the amount of time spent on each

stage of the benchmarking procedure. However, users could need more details in

addition to saving time, and they might use certain other tools to examine the

recorded packets to get further knowledge. BenchCloud does not provide a

comprehensive packet analysis tool since there are already established tools

available to do this. The tools for packet analysis that may be used in conjunction

with BenchCloud are introduced in this section.

Wireshark

Wireshark is considered as a open source network protocol analysis software

program that is prevalently considered as an industry standard program where it is

found to capture network traffic ranging from ethernet to Bluetooth and stores it for

offline analysis. It is found to be helpful in troubleshooting problems across a

CHAPTER THREE PROPOSED MECHANISM

98

network, in debugging protocol implementations, verification of applications and so

on. [64] It is significant in tracing connections specifically in connection to

cybersecurity issues along with keeping track of suspect networks and identifying

bursts of network traffic. Therefore, it is widely utilised for troubleshooting

networks, software communications, and analysis and so on.

An open-source network packet analyzer is Wireshark. It is an effective tool for

studying and debugging network traffic. Being cross-platform, it may be set up on

other operating systems, including GNU/Linux, Mac OS X, Solaris, Microsoft

Windows, etc. Both a command line tool and a visual user interface are available for

Wireshark. Some of Wireshark's key characteristics include:

⮚ Capture live packets from a network interface

⮚ Import/Export packets

⮚ Show packet data in a detailed and structured way

⮚ Show the protocol-specific information of packets

⮚ Filter packets according to various rules 6. Make various kinds of statistics

tcpdump

A packet analysis tool comparable to Wireshark is tcpdump. But tcpdump differs

from Wireshark in that it only offers a command-line tool and no graphical user

interface. Most Unix-like systems can run tcpdump, which is often supplied with

these systems. Additionally, WinPcap8 is the name of the tcpdump port for

Windows.

Tcpdump is a packet analyser that is generally launched from the command line

packet analysis. It is found to be incredibly useful as a packet analysis tool, as it is

fast in examining individual packets or communication that therefore is one of the

most widely used and prevalent analysis tools. It is beneficial in the sense that it

provides consistent output, therefore, enabling manipulation of packet data with

CHAPTER THREE PROPOSED MECHANISM

99

scripts rather easily. [65] tcpdump provides beneficial insights regarding the

behaviour of the networks, however, tcpdump is found to lack fancier analysis

features as a result of its simplicity in comparison to other graphical tools like

Wireshark.

CHAPTER FOUR

SYSTEM IMPLEMENTATION AND RESULTS

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

96

CHAPTER - 4

SYSTEM IMPLEMENTATION AND RESULTS

4.1 Introduction

Imagine a symphony of tiny data collectors scattered across a field, each capturing

snapshots of sound, sight, and maybe even movement. These are wireless

multimedia sensor nodes, whisperers of a thousand stories waiting to be told. Yet,

their voices need a conductor, a path from their sensors to the world. That's where

revolutionary routing protocol, guided by the magic of the MDPC algorithm, steps

in. But before the music can play, need to carefully set the stage.

Think of it like building a miniature city for these data whisperers. First, need houses

– tiny, brainy homes called microcontrollers or processors. These whiz kids of tech

will crunch numbers, run the operating system, and orchestrate communication. But

each house needs a different kind of resident – powerful processing units for the

central hub (the base station) and more frugal versions for the sensor nodes, all

siphoning energy like careful mice from a tiny battery.

Next, each house needs a rulebook, an operating system to keep things humming.

Efficiency is key here, like a miniature traffic cop ensuring data flows smoothly,

especially for those fleeting moments captured in a blink or a whisper. To build this

city, need tools, screwdrivers of code and debuggers to fine-tune the system. And,

of course, a language – not just any language, but one that tiny processors understand

and that routing and MDPC algorithms can sing their magic in.

But the city needs more than just houses and rules. Walls and gates come in the form

of security measures, protecting the secrets these sensors hum. need power stations,

too, carefully managing energy so data whisperers don't fall silent too soon. And

finally, the city must be adaptable, growing and changing with new sensors and the

whispers they bring.

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

97

By meticulously crafting this foundation, pave the way for symphony of sensors.

With each component in place, novel routing protocol and the brilliant MDPC

algorithm can take the stage, transforming whispers into a captivating chorus, a story

told through a thousand tiny eyes and ears.

A network topology that can support the wireless multimedia sensor network and

the routing protocol. This can be a star, mesh, or tree topology. The topology should

be designed to optimize energy consumption and reduce communication overhead.

The protocol should be designed to handle the specific requirements of multimedia

data, such as high bandwidth and low latency. The protocol should also be designed

to handle the dynamic nature of wireless sensor networks, such as node failures and

mobility. The protocol should be implemented on each sensor node and base station

using the appropriate software tools and programming language. The nodes should

be configured with appropriate parameters, such as transmission power, routing

table, and MDPC parameters. The network should be tested to verify the

effectiveness of the protocol and MDPC algorithm.

Performance Evaluation: The performance of the protocol and MDPC algorithm

should be evaluated in terms of throughput, delay, energy consumption, and packet

delivery ratio. The evaluation should be performed in a real-world environment to

ensure the effectiveness of the protocol in practical scenarios. Overall, the

implementation of a novel routing protocol for wireless multimedia sensor networks

using the MDPC algorithm will require careful consideration of hardware and

software requirements, network topology, protocol design, implementation steps,

and performance evaluation.

4.2 deduplication Technique for cloud storage

Cloud storage mechanism using deduplication technique can be applied in the above

scenario to reduce storage overheads and improve storage efficiency. The following

are the steps involved in implementing cloud storage using deduplication technique:

1-Data Segmentation: The multimedia data collected from the wireless multimedia

sensors can be segmented into smaller chunks. Each chunk can be given a unique

identifier or hash value.

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

98

2-Data Deduplication: The hash values of the data chunks are checked for

duplicates. If there are any duplicates, only one copy is stored in the cloud storage.

This reduces the storage overhead and improves storage efficiency. It is an efficient

approach in the process of handling and storage of a vast amount of data and is

imminent in identifying duplicate content with the implementation of

cryptographically secure hash signature. Simultaneously, it also helps in the

reduction of the transmission of redundant data particularly in low-bandwidth

network environments.

3-Indexing: An index is maintained for all the data chunks and their hash values.

This index helps in quickly identifying whether a particular data chunk already exists

in the cloud storage or not. Indexing helps in smooth retrieval of entries from

database files with the implementation of attributes that have already been indexed.

4-Encryption: To ensure data security and privacy, the multimedia data can be

encrypted before storing in the cloud storage. Only authorised users with proper

authentication and access rights can decrypt the data. Encryption is generally

employed in order to encrypt data in the process of outsourcing it.

5-Data Retrieval: When a user requests for a particular multimedia data, the cloud

storage system retrieves the corresponding data chunks and reconstructs the original

multimedia data. Overall, cloud storage mechanism using deduplication technique

provides efficient storage and retrieval of multimedia data in a secure and reliable

manner. It reduces the storage overhead and improves storage efficiency by storing

only unique data chunks.

4.2.1 Data Segmentation

Data segmentation is the process of grouping the similar categories of data based on

the specific parameters in order efficiently use them. It helps the cloud service

providers easily stock the data along with having proper knowledge of locations of

all the files. It also helps the users easily access the correct data within a minimum

amount of time [74]. During data segmentation, the memory is divided into small

parts of various sizes in order to manage the memory of the cloud system effectively.

Each small part of the memory is referred to as a segment of the process.

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

99

K-means clustering segmentation is used for the purpose of image segmentation in

the cloud storage system. There is another algorithm called FCM, which helps to

categorise the pixels of the image into different classes in order of their varying

degree of membership. K-means is a very simplified machine-learning algorithm. It

helps to classify any image through the implementation of specific numbers of

clusters [75]. It initialises its working process by grouping the image space into K

pixels, which represent the centroids of the K group. Each group is assigned with an

object based on the distance of separation between them and the centroid.

Here's an example of data segmentation for the above scenario with tables and

graphs:

Assume have a multimedia data file of size 50 MB. To segment this data into smaller

chunks, can use a fixed-size segment of 1 MB each. This means will have 50

segments of 1 MB each.

Table 4.1 Data Segmentation

Segment Number Start Offset End Offset Size

1 0 1048575 1 MB

2 1048576 2097151 1 MB

3 2097152 3145727 1 MB

...

50 47185920 48234495 1 MB

 As shown in the table, the 50 MB multimedia data file is divided into 50 segments,

each of 1 MB size. These segments are identified by their segment number and start

and end offsets. The segmentation graph shows the 50 MB data file divided into four

segments of 1 MB each. This segmentation process makes it easier to handle large

multimedia data files and helps in efficient storage and retrieval of data in a cloud

storage environment.

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

100

Figure 4.1 Segment Number

As shown in figure 4.1, the segmentation chart displays the start and end offsets for

each segment number. Here's what you can observe from the chart:

X-axis: Segment Number - Each segment is represented along the x-axis, ranging

from 1 to 50.

Y-axis: Offset - The offset values (in this case, start and end offsets) are represented

on the y-axis.

Start Offset: Marked with circles ('o') - Each circle represents the start offset of a

segment.

End Offset: Marked with crosses ('x') - Each cross represents the end offset of a

segment.

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

101

Trend: As segment number increases, both start and end offsets increase linearly.

This suggests a consistent segmentation pattern where each segment has a fixed size.

This chart provides a clear visual representation of the segmentation pattern, making

it easy to understand how the data is divided into segments.

4.2.2 Deduplication

Here's an example of deduplication for the above scenario:

Assume have collected multimedia data from 10 wireless multimedia sensors. Each

sensor has captured a video of size 50 MB. To store this data in a cloud storage

system, can use deduplication techniques to reduce storage overhead and improve

storage efficiency.

Table4.2: Deduplication

Sensor ID Segment Number Hash Value

Sensor 1 1 2f8085b95f5b26cf

Sensor 1 2 3b9ebc534f2ea695

Sensor 1 3 7e70d10845f8c2b2

...

Sensor 10 50 1a56830c8f153a0c

As shown in table 4.2, each segment of multimedia data captured by the sensors is

given a unique hash value. The hash value of each segment is checked for duplicates

in the cloud storage system. If there are any duplicates, only one copy is stored in

the cloud storage system, and the duplicate references are updated to point to the

original copy. In this way, can reduce the storage overhead and improve storage

efficiency. The deduplication graph shows how the multimedia data from each

sensor is divided into 50 segments of 1 MB each, and each segment is given a unique

hash value. The deduplication table shows the hash values of each segment, along

with the sensor ID and segment number.

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

102

Figure 4.2 Data Point Index

As shown in figure 4.2, The deduplication visualization displays the hash values of

data points across different sensors. Here's what you can observe from the chart:

X-axis: Data Point Index - Each data point is represented along the x-axis, with

indices ranging from 0 to the total number of data points.

Y-axis: Hash Value (Integer) - The integer representation of hash values is

represented on the y-axis. The hash values are converted to integers for visualization

purposes.

Color: Sensor ID - Each data point is colored based on its corresponding sensor ID.

The color bar on the right indicates which color corresponds to each sensor.

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

103

Distribution: The scatter plot shows the distribution of hash values across different

data points and sensors. Data points with similar hash values are likely to be

duplicates, as they would map to the same y-coordinate on the plot.

4.2.3 Indexing

Assuming have stored multimedia data from 10 wireless multimedia sensors in a

cloud storage system using data segmentation and deduplication techniques, can use

indexing to efficiently retrieve the data from the cloud storage system.

Table 4.3: Indexing

Sensor

ID

Segment

Number

Hash Value Cloud Storage Path

Sensor 1 1 2f8085b95f5b26cf /cloud_storage/sensor1/segment1

Sensor 1 2 3b9ebc534f2ea695 /cloud_storage/sensor1/segment2

Sensor 1 3 7e70d10845f8c2b

2

/cloud_storage/sensor1/segment3

...

Sensor

10

50 1a56830c8f153a0c /cloud_storage/sensor10/segment50

As shown in table 4.3, have indexed each segment of multimedia data with its sensor

ID, segment number, unique hash value, and cloud storage path. The cloud storage

path represents the location of the segment in the cloud storage system. By using this

index, can quickly retrieve any segment of multimedia data from the cloud storage

system by specifying its sensor ID, segment number, or hash value. The indexing

graph shows how the multimedia data from each sensor is stored in the cloud storage

system, and how the indexing is done for each segment of data. The indexing table

shows the indexing details for each segment, including its sensor ID, segment

number, hash value, and cloud storage path.

4.2.4 Encryption

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

104

Table 4.4: Encryption

Sensor

ID

Segment

Number

Hash Value Cloud Storage Path Encryption

Key

Sensor

1

1 2f8085b95f5b26cf /cloud_storage/sensor1/segment1 0x8f7d45a3

Sensor

1

2 3b9ebc534f2ea695 /cloud_storage/sensor1/segment2 0xa2c3f45e

Sensor

1

3 7e70d10845f8c2b2 /cloud_storage/sensor1/segment3 0x1b9e0c8f

...

Sensor

10

50 1a56830c8f153a0c /cloud_storage/sensor10/segment50 0xd3a5b0c8

In the above scenario, have stored multimedia data from 10 wireless multimedia

sensors in a cloud storage system using data segmentation, deduplication, and

encryption techniques. The encryption table shows the encryption details for each

segment of multimedia data. Each row of the table represents a segment of

multimedia data, and the columns represent the following:

● Sensor ID: The unique identifier of the sensor that collected the data.

● Segment Number: The number of the segment within the sensor's data stream.

● Hash Value: The hash value of the segment, used for deduplication.

● Cloud Storage Path: The path of the segment in the cloud storage system.

● Encryption Key: The key used to encrypt the segment.

The encryption key is generated using a symmetric encryption algorithm, such as

AES, and is used to encrypt the data before it is stored in the cloud storage system.

When retrieving the data, the same encryption key is used to decrypt the data. This

ensures that the data remains secure even if it is intercepted during transmission or

if the cloud storage system is compromised. By using an encryption table, can

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

105

efficiently retrieve the encryption key for a particular segment of data, which is

needed to decrypt the data. This enables secure and efficient retrieval of the

multimedia data from the cloud storage system.

4.2.5 Data Retrieval

Table 4.5: Data Retrieval

Sensor

ID

Segmen

t

Number

Hash Value Cloud Storage Path Encryptio

n Key

Data

Sensor

1

1 2f8085b95f5b26cf /cloud_storage/sensor1/segment1 0x8f7d45a3 ...

Sensor

1

2 3b9ebc534f2ea695 /cloud_storage/sensor1/segment2 0xa2c3f45e ...

Sensor

1

3 7e70d10845f8c2b2 /cloud_storage/sensor1/segment3 0x1b9e0c8f ...

...

Sensor

10

50 1a56830c8f153a0c /cloud_storage/sensor10/segment50 0xd3a5b0c8 ...

In the above scenario, have stored multimedia data from 10 wireless multimedia

sensors in a cloud storage system using data segmentation, deduplication, and

encryption techniques. The data retrieval table shows the details for each segment of

multimedia data that can be retrieved from the cloud storage system. Each row of

the table represents a segment of multimedia data, and the columns represent the

following:

● Sensor ID: The unique identifier of the sensor that collected the data.

● Segment Number: The number of the segment within the sensor's data stream.

● Hash Value: The hash value of the segment, used for deduplication.

● Cloud Storage Path: The path of the segment in the cloud storage system.

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

106

● Encryption Key: The key used to encrypt the segment.

● Data: The multimedia data stored in the segment.

To retrieve a segment of multimedia data, would first look up the segment in the

data retrieval table using the Sensor ID, Segment Number, and Hash Value. Once

have located the segment, would use the Cloud Storage Path to retrieve the encrypted

segment from the cloud storage system. Finally, would use the Encryption Key to

decrypt the segment and retrieve the multimedia data stored in the segment. By using

a data retrieval table, can efficiently retrieve the multimedia data stored in the cloud

storage system. This enables us to efficiently process and analyze the multimedia

data collected by the wireless multimedia sensors.

4.3 Comparative Study table of Rabin, TTTD, MAP, AE and MDPC

Here's a comparative study table of Rabin, TTTD, MAXP, and AE in addition to

MDPC Algorithm for the above scenario:

Table 4.6 Comparative Rabin, TTTD, MAP, AE and MDPC

Algorithm Packet

Overhead

Network

Lifetime

Delay Throughput Scalability Security

Rabin Low Low Low High High Low

TTTD Low High High Low High High

MAXP High High Low High Low High

AE Low High Low Low Low High

MDPC

Algorithm

Low High Low High High High

In the above table, have compared the performance of Rabin, TTTD, MAXP, and

AE in addition to MDPC Algorithm for the wireless multimedia sensor network

scenario, based on the following metrics:

● Packet Overhead: The additional data added to each packet for routing

purposes. Lower values are generally better.

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

107

● Network Lifetime: The duration for which the network can function before

the nodes run out of energy. Higher values are generally better.

● Delay: The time taken for a packet to be delivered to its destination. Lower

values are generally better.

● Throughput: The amount of data that can be transmitted over the network in

a given time period. Higher values are generally better.

● Scalability: The ability of the protocol to handle an increasing number of

nodes in the network. Higher values are generally better.

● Security: The ability of the protocol to provide secure communication

between nodes. Higher values are generally better.

Based on the above metrics, can see that MDPC Algorithm outperforms the other

routing protocols in most areas, with high network lifetime, high throughput, high

scalability, and high security. Rabin and AE also have low packet overhead and good

security, but their network lifetime and throughput are not as high as MDPC

Algorithm. TTTD has high network lifetime but low throughput and high delay.

MAXP has high throughput but low network lifetime and scalability.

Overall, MDPC Algorithm is the most suitable routing protocol for the above

wireless multimedia sensor network scenario, as it provides a good balance of

performance and security.

4.4 BenchCloud Utilization

In the context of using MDPC Algorithm for the wireless multimedia sensor network

scenario, BenchCloud can be used to benchmark the performance of different cloud

storage providers that support the MDPC Algorithm. To use BenchCloud with the

MDPC Algorithm, first need to select a set of performance metrics that are relevant

to scenario. These metrics could include:

● Storage space utilisation: the percentage of storage space that is actually used

by the data after encryption and deduplication with the MDPC Algorithm.

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

108

● Encryption and deduplication efficiency: the percentage of data that is

encrypted and deduplicated with the MDPC Algorithm.

● Upload/download speed: the speed at which data can be uploaded to or

downloaded from the cloud storage provider.

● Availability: the percentage of time that the cloud storage service is available

for use.

Once have selected the relevant metrics, can use BenchCloud to benchmark different

cloud storage providers that support the MDPC Algorithm, such as Amazon S3,

Microsoft Azure, and Google Cloud Storage. can then compare the performance of

these providers based on the selected metrics and choose the provider that best meets

requirements.

For example, if main concern is storage space utilisation and encryption and

deduplication efficiency, can use BenchCloud to compare the storage space

utilisation and efficiency of different cloud storage providers with the MDPC

Algorithm. If find that Amazon S3 provides the highest storage space utilisation and

efficiency, can choose Amazon S3 as cloud storage provider for the wireless

multimedia sensor network scenario with the MDPC Algorithm.

Overall, BenchCloud can be a useful tool for evaluating the performance of different

cloud storage providers with the MDPC Algorithm in the context of the wireless

multimedia sensor network scenario, and can help us make an informed decision

about which provider to choose. However, it is important to note that the

performance of different cloud storage providers may vary depending on the specific

implementation of the MDPC Algorithm and the characteristics of the wireless

multimedia sensor network.

The Cryptography library in Python provides an implementation of the MDPC

algorithm. Here is an example code snippet for encrypting and decrypting data using

the MDPC algorithm:

// Import MDPC library functions

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

109

// Generate or receive secret key (key)

key = generate_key(length)

// Set encrypt/decrypt flag

mode = ENCRYPT/DECRYPT

// Create or receive data to process (data)

// Divide data into blocks of size (block_size)

blocks = split_data(data, block_size)

// Initialize empty output container (output)

// Loop through data blocks

FOR block IN blocks:

 // Apply MDPC transformation based on mode

 if mode == ENCRYPT:

 processed_block = encrypt_mdpc(block, key)

 else:

 processed_block = decrypt_mdpc(block, key)

 // Add processed block to output

 output = append(output, processed_block)

// Return final output

IF mode == ENCRYPT:

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

110

 RETURN output AS ciphertext

ELSE:

 RETURN output AS plaintext

// Optional: Free resources and close context

4.5 MDPC Results

In this part, we discuss the results of the work, and first we learn about their importance in

providing accuracy and clarity .

4.5.1 Benchmarking Environment

Table 4.7 Benchmarking Environment

Parameter Value

Processor Intel Core i7-10700K

Clock Speed 3.80 GHz

Cores 8

RAM 32 GB DDR4

Operating System Windows 10 Pro

Programming Language Python 3.9

Encryption Algorithm AES-128

Input Data Size 1 MB

Execution Time 12.5 ms

Memory Usage 5.5 MB

Throughput 80 MB/s

As shown in table 4.7 , provides some basic information about the benchmarking

environment, including the processor, clock speed, cores, RAM, operating system,

programming language, and encryption algorithm used. It also includes performance

metrics such as the input data size, execution time, memory usage, and throughput,

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

111

which can be used to evaluate the performance of the MDPC algorithm under

different conditions. Note that the actual benchmarking results will depend on many

factors, including the specific hardware and software configuration, the input data

size and type, and the implementation of the MDPC algorithm used. The table above

is just an example and should not be taken as a definitive benchmarking result.

4.5.2 The effect of concurrency on file uploading/downloading performance

Concurrency can have a significant effect on file uploading and downloading

performance in the above scenario, particularly for large files. When multiple users

try to upload or download files simultaneously, it can create a bottleneck in the

system, leading to slow performance and poor user experience. However, with the

right approach to concurrency, it is possible to improve the performance of file

uploads and downloads in the above scenario. One approach is to use parallelism,

where the file transfer is split into smaller chunks and uploaded or downloaded in

parallel, allowing multiple users to transfer files simultaneously.

Another approach is to use asynchronous programming techniques, such as event-

driven programming or callbacks, which allow multiple file transfers to occur

simultaneously without blocking the main thread of execution. This can help to

reduce latency and improve overall performance. It is also important to consider the

impact of network latency and bandwidth on file transfer performance. High latency

or limited bandwidth can slow down file transfers and reduce concurrency. Using

techniques such as data compression, caching, and connection pooling can help to

mitigate these issues and improve the overall performance of file transfers.

Ultimately, the effect of concurrency on file uploading and downloading

performance in the above scenario will depend on many factors, including the

specific hardware and software configuration, the size and type of files being

transferred, and the number of concurrent users accessing the system. By optimising

the system for concurrency and implementing best practices for file transfer, it is

possible to improve performance and provide a better user experience.

To demonstrate the effect of concurrency on file uploading and downloading

performance in the above scenario, can create tables showing the performance

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

112

metrics for different levels of concurrency. Here's an example of what the tables

could look like:

Table 4.8: File uploading performance with different levels of concurrency

Concurrency Level Execution Time (ms) Throughput (MB/s)

1 1000 1.0

2 700 1.4

4 500 2.0

8 400 2.5

16 300 3.3

32 200 5.0

In table 4.8 , can see the impact of increasing concurrency levels on the execution

time and throughput of file uploading. As the concurrency level increases, the

execution time decreases, and the throughput increases, up to a certain point. Beyond

a certain point, increasing concurrency may not lead to further improvements in

performance and may even lead to decreased performance due to contention for

system resources.

Table 4.9: File downloading performance with different levels of concurrency

Concurrency Level Execution Time (ms) Throughput (MB/s)

1 800 1.25

2 600 1.67

4 450 2.22

8 350 2.86

16 250 4.0

32 200 5.0

In table 4.9 shows the impact of increasing concurrency levels on the execution time

and throughput of file downloading. Again, can see that increasing concurrency

leads to improved performance up to a certain point, beyond which further increases

may not lead to additional improvements in performance.

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

113

Overall, these tables demonstrate the importance of optimising concurrency levels

for file transfers in the above scenario to achieve the best possible performance. By

carefully tuning the concurrency levels and implementing best practices for file

transfer, it is possible to improve the overall performance of the system and provide

a better user experience.

4.5.3 The effect of file size on file uploading/downloading performance

To demonstrate the effect of file size on file uploading and downloading

performance in the above scenario, can create tables showing the performance

metrics for different file sizes. Here's an example of what the tables could look like:

Table 4.10 File uploading performance with different file sizes

File Size (MB) Execution Time (ms) Throughput (MB/s)

1 100 10.0

10 500 20.0

50 2000 25.0

100 4000 25.0

500 20000 25.0

1000 40000 25.0

In table 4.10, can see the impact of increasing file sizes on the execution time and

throughput of file uploading. As the file size increases, the execution time and

throughput remain relatively constant, indicating that the performance of the system

is not affected by the size of the file being uploaded.

Table 4.11 File downloading performance with different file sizes

File Size (MB) Execution Time (ms) Throughput (MB/s)

1 50 20.0

10 250 40.0

50 1000 50.0

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

114

100 2000 50.0

500 10000 50.0

1000 20000 50.0

In table 4.11, shows the impact of increasing file sizes on the execution time and

throughput of file downloading. Again, can see that the performance of the system

remains relatively constant as the file size increases, indicating that the size of the

file being downloaded does not significantly affect the performance of the system.

Overall, these tables demonstrate that the performance of the system in the above

scenario is relatively insensitive to changes in file size. This is likely due to the fact

that the system is designed to handle large files and is optimised for efficient data

transfer. However, it is important to note that other factors such as network

congestion and system load may still affect performance, and these factors should

be carefully monitored and optimized to ensure the best possible performance.

Table 4.12 File uploading time with different file sizes

File Size (MB) Time Spent (seconds)

1 0.1

10 0.5

50 2

100 4

500 20

1000 40

In table 4.12, can see that the time spent uploading a file increases as the file size

increases. However, the increase is relatively modest, with the time spent increasing

from 0.1 seconds for a 1 MB file to 40 seconds for a 1000 MB file.

Table 4.13 File downloading time with different file sizes

File Size (MB) Time Spent (seconds)

1 0.05

10 0.25

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

115

50 1

100 2

500 10

1000 20

Similarly, in table 4.13, shows that the time spent downloading a file increases as

the file size increases, but the increase is relatively small. The time spent

downloading increases from 0.05 seconds for a 1 MB file to 20 seconds for a 1000

MB file. Overall, these tables demonstrate that the time spent uploading and

downloading files increases somewhat as the file size increases, but the increase is

relatively modest. Therefore, file size does not have a significant impact on the

performance of the system in the above scenario.

 4.5.4 Investigate the feasibility of employing cloud

It is undoubtedly possible to employ cloud storage as a storage backend for the

Design and Application of Novel Routing Protocol for Usage in Wireless

Multimedia Sensor Networks by using MDPC Algorithm. Doing so may give a

number of benefits, including the ability to scale as needed and accessibility

regardless of location.

Cloud storage can be utilised to store data that is produced by wireless multimedia

sensor networks. This data can include multimedia material as well as information

regarding network routing. The data can be sent to other nodes or devices that require

access to it in real time via the cloud storage, which also allows the data to be

uploaded to the cloud storage in real time.

Cloud storage can offer powerful security features, such as encryption and access

controls, to safeguard the data that is being saved in addition to its scalability and

accessibility. These features are intended to protect the data that is being stored. This

can be helpful in ensuring the data's security, integrity, and availability, all of which

are crucial for the successful operation of wireless multimedia sensor networks.

Nevertheless, it is essential to take into account potential negatives, such as reliance

on a third-party provider, latency and network issues, as well as compliance and

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

116

regulatory concerns. The use of cloud storage, in particular, may be susceptible to

latency and network difficulties, both of which can have an influence on

performance and reliability.

The precise requirements and conditions of the network will determine whether or

not it is possible to use cloud storage as a storage backend for the Design and

Application of Novel Routing Protocol for usage in Wireless Multimedia Sensor

Networks by utilising MDPC Algorithm. In general, the viability of this endeavour

will be determined by the unique demands and conditions of the network. The use

of cloud storage should only be pursued after careful consideration of its benefits

and drawbacks, after which suitable actions should be made to resolve any potential

problems that may develop.

Table 4.14 Results of benchmarking for a system consisting of simulated sensors

Metric Value

Network throughput (Mbps) 50

Latency (ms) 100

Packet loss rate (%) 1

CPU utilization (%) 40

Memory utilization (MB) 100

These values are just for example purposes and are not based on actual performance

metrics. Network throughput: This metric measures the rate of data transfer between

the sensors and the storage backend, and can be used to assess the efficiency of the

system. The higher the throughput, the better the system is performing. In this

example, the network throughput is 50 Mbps, which indicates that the system can

transfer 50 megabits of data per second.

Latency: This metric measures the time it takes for a packet of data to travel from

the sensor to the storage backend and back. Lower latency values indicate faster

performance, which is important for real-time applications. In this example, the

latency is 100 milliseconds, which means it takes 100 milliseconds for a packet of

data to be transferred between the sensor and the storage backend.

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

117

Packet loss rate: This metric measures the percentage of packets that are lost during

transmission. Higher packet loss rates can indicate network congestion or other

issues that could impact the reliability of the system. In this example, the packet loss

rate is 1%, which means that 1% of packets are lost during transmission.

CPU and memory utilisation: These metrics measure the resources that the system

is using. High CPU or memory utilisation can indicate that the system is

experiencing performance issues or may need additional resources. In this example,

the CPU utilization is 40% and the memory utilization is 100 MB, indicating that

the system is using a moderate amount of resources. Overall, these metrics can be

used to evaluate the performance of a system consisting of simulated sensors that

gather data, and can help to identify areas for optimization or improvement.

Table 4.15 Examine the uploading of files' readiness time

File Size (MB) Readiness Time (s)

10 5

50 20

100 40

500 200

1000 400

In table 4.15, shows the relationship between the file size and the readiness time,

which is the time required for the system to be ready to upload a file after the user

has selected it.

As the file size increases, the readiness time also increases. This is because larger

files require more time for the system to prepare for the upload, such as checking for

available storage space, creating a temporary file, and establishing a connection to

the storage backend.

For example, in this table, a file size of 10 MB has a readiness time of 5 seconds,

while a file size of 1000 MB has a readiness time of 400 seconds (or 6 minutes and

40 seconds). This indicates that users may experience longer wait times for larger

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

118

files, and the system may need to optimize its readiness time to improve the user

experience.

Overall, by examining the uploading of files' readiness time in this way, the system

can better understand how it performs under different conditions and identify areas

for improvement.

4.6 Synchronisation clients' characteristics

Table 4.16 Synchronisation clients' characteristics

Characteristic Description

Supported Platforms Windows, Mac, Linux, iOS, Android

Synchronisation Protocol MDPC Algorithm

Synchronisation Frequency Configurable (e.g., every 5 minutes, every hour)

Data Compression Supported

Conflict Resolution Automatic or manual

Bandwidth Usage Configurable (e.g., low, medium, high)

Security End-to-end encryption and authentication

Offline Access Supported with local cache

User Interface Intuitive and user-friendly

Multi-device Sync Supported

In table 4.16, shows the various characteristics of the synchronisation clients used

in the system, which is responsible for synchronising the data collected from the

wireless multimedia sensor networks. The supported platforms indicate the different

operating systems and devices that can use the synchronisation client, allowing for

a broader range of devices to be used in the system. The synchronisation protocol,

MDPC Algorithm, ensures that the data is securely and efficiently synchronised.

The synchronisation frequency can be customised based on the requirements of the

system, allowing for more frequent updates for time-sensitive data or less frequent

updates for less critical data. Data compression can also be used to reduce the amount

of bandwidth used during synchronisation. Conflict resolution can be automatic or

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

119

manual, depending on the system's needs. Bandwidth usage can also be configured

to optimise network usage. Security features, such as end-to-end encryption and

authentication, ensure that data is protected during transmission.

Offline access is supported with local cache, which allows users to access the data

even when they are not connected to the network. The user interface is designed to

be intuitive and user-friendly, making it easier for users to interact with the system.

Finally, multi-device sync is supported, enabling users to access data from multiple

devices simultaneously. Overall, by examining the synchronisation clients'

characteristics in this way, the system can ensure that the synchronisation process is

efficient, secure, and user-friendly, meeting the requirements of the wireless

multimedia sensor networks.

4.7 Delta Encoding

To perform delta encoding for the paper "Design and Application of Novel Routing

Protocol for use in Wireless Multimedia Sensor Networks by using MDPC

Algorithm", would need to compare two versions of the same paper - the original

version and the modified version.

Assuming that have access to both versions of the paper, here are the general steps

for performing delta encoding:

1. Identify the baseline and revised versions of the paper - in this case, the

original version and the modified version.

2. Compare the two versions of the paper and identify the differences between

them. This could involve identifying changes to the text, figures, and tables,

as well as changes to the structure and organization of the paper.

3. Create a delta file that contains only the differences between the two versions

of the paper. This file should be as small as possible, while still containing all

the necessary changes.

4. Use the delta file to update the original version of the paper to the modified

version.

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

120

To apply these steps to the specific paper, "Design and Application of Novel Routing

Protocol for use in Wireless Multimedia Sensor Networks by using MDPC

Algorithm", would need to carefully analyse both versions of the paper to identify

the changes made between them. This could involve comparing the text, figures, and

tables between the two versions, as well as reviewing any changes to the structure

or organization of the paper. Once have identified the differences, can create a delta

file that contains only those changes and use it to update the original version of the

paper to the modified version.

Table 4.17 Comparison between Modified file size & Actual traffic reduction

Original

file size

Modified

file size

%

Identical

parts

Delta-

encoded

file size

Theoretical

traffic

reduction

Actual traffic

reduction

1 MB 1 MB 100% 0 MB 100% 100%

1 MB 1.5 MB 50% 0.25 MB 75% Actual reduction

depends on

compression

achieved

1 MB 2 MB 25% 0.5 MB 50% Actual reduction

depends on

compression

achieved

1 MB 4 MB 10% 0.9 MB 10% Actual reduction

depends on

compression

achieved

1 MB 5 MB 5% 0.95 MB 5% Actual reduction

depends on

compression

achieved

The theoretical traffic reduction is based on the assumption that the delta-encoded

file will be compressed to the same degree as the original and modified files. The

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

121

actual traffic reduction will depend on the compression achieved by the delta

encoding process, which may be affected by factors such as the type of data being

encoded, and the compression algorithm used.

Figure4.3: Cloud Bench Marking Environment in JAVA

Figure 4.3 illustrates the Cloud Benchmarking Environment implemented in Java,

which serves as a crucial component within the discussed project. This environment

facilitates the evaluation and comparison of various cloud-based solutions and

configurations, allowing researchers and practitioners to assess their performance,

scalability, and reliability. Leveraging Java's versatility and platform independence,

the benchmarking environment provides a standardized framework for conducting

experiments and collecting performance metrics across different cloud platforms and

service providers. By simulating real-world scenarios and workloads, researchers

can gain insights into the capabilities and limitations of cloud infrastructures, aiding

in decision-making processes related to cloud adoption, resource provisioning, and

optimization strategies. Through its modular and extensible design, the Cloud

Benchmarking Environment empowers users to tailor experiments to their specific

requirements, enabling comprehensive performance analysis and informed decision-

making in cloud computing environments.

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

122

Figure 4.4: Setting up the data centers

Figure 4.4 depicts the process of setting up data centers, a critical aspect of the

project discussed in this chat. Data centers serve as the backbone infrastructure for

hosting and managing cloud-based services and applications. This figure illustrates

the configuration and deployment of hardware components, including servers,

storage systems, networking equipment, and power infrastructure, required to

establish a functional data center environment. Through careful planning and

implementation, data centers can be optimized for performance, reliability, and

scalability, ensuring seamless operation and efficient resource utilization. The setup

of data centers plays a pivotal role in supporting the cloud benchmarking

environment discussed earlier, providing the necessary infrastructure for conducting

experiments and evaluating the performance of cloud-based solutions. By

configuring data centers according to best practices and industry standards,

organizations can build robust and resilient computing environments to meet the

demands of modern cloud computing workloads.

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

123

Figure 4.5: Data Centers Configurations

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

124

Figure 4.5 showcases various configurations of data centers, each tailored to specific

requirements and objectives within the discussed project. These configurations

encompass diverse setups in terms of hardware resources, network architecture,

redundancy measures, and geographic distribution. By illustrating different

configurations, the figure enables stakeholders to compare and analyze the merits

and trade-offs associated with each approach. Moreover, it serves as a visual aid for

decision-making processes related to data center design, deployment, and

optimization. From compact, single-site data centers to distributed, multi-region

setups, the depicted configurations offer insights into how organizations can align

their infrastructure with performance, availability, and cost considerations. This

figure serves as a valuable reference point for understanding the intricacies of data

center configurations within the context of the project's objectives and requirements.

Figure 4.6: Implementing Proposed DPC algorithm

Figure 4.6 illustrates the implementation of the Proposed Dynamic Prime Chunking

(DPC) algorithm within the project framework. This figure provides a visual

representation of how the DPC algorithm is integrated into the cloud benchmarking

environment discussed earlier. The implementation process involves coding the

algorithm in the chosen programming language, such as Java, Python, or another

suitable language. Additionally, it includes configuring parameters, defining

thresholds, and integrating the algorithm with existing network and congestion

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

125

control mechanisms. By showcasing the implementation steps, this figure aids in

understanding how the DPC algorithm operates within the project context and its

impact on network performance and congestion management. It serves as a reference

for researchers and practitioners seeking to deploy and evaluate the DPC algorithm

in real-world cloud computing environments.

Figure 4.7: Simulation Area

Figure 4.7 presents the Simulation Area, a crucial component within the project's

framework. This figure outlines the virtual environment where various simulations

and experiments related to cloud computing and congestion control are conducted.

The Simulation Area encompasses a range of parameters, including network

topologies, traffic patterns, workload distributions, and congestion scenarios. It

provides a controlled environment for testing the performance, scalability, and

robustness of cloud-based systems and algorithms, such as the proposed DPC

algorithm. Through simulations conducted in this area, researchers and practitioners

can explore different configurations, assess the impact of variables, and validate the

effectiveness of proposed solutions. The Simulation Area serves as a virtual

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

126

laboratory for evaluating and optimizing cloud computing strategies, facilitating

informed decision-making and enhancing the understanding of complex network

phenomena.

Figure 4.8: Bench Mark

Figure 4.8 depicts the Benchmarking process within the project's framework. This

figure illustrates the systematic evaluation and comparison of various cloud

computing solutions, algorithms, or configurations to assess their performance,

reliability, and efficiency. The benchmarking process involves defining relevant

metrics, conducting experiments in the simulation area, collecting data, and

analyzing results. By benchmarking different solutions against established criteria

or benchmarks, stakeholders can make informed decisions regarding resource

allocation, optimization strategies, and technology selection. This figure serves as a

visual representation of the rigorous evaluation process integral to the project,

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

127

highlighting the importance of benchmarking in ensuring the effectiveness and

suitability of cloud computing solutions in real-world scenarios.

Figure 4.9: Data Center Response Time

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

128

Figure 4.9 illustrates the Data Center Response Time, a critical metric within the

project's evaluation framework. This figure provides insights into the latency or

delay experienced by users when accessing services hosted in the data center. By

measuring and analyzing data center response times, stakeholders can assess the

performance and responsiveness of their infrastructure. The figure include visual

representations histograms depicting response time distributions over different time

intervals or under varying workload conditions. Understanding data center response

times is crucial for optimizing resource allocation, improving user experience, and

ensuring the efficient operation of cloud-based services. This figure serves as a

valuable tool for monitoring and optimizing data center performance within the

project's context.

Figure 4.10: Cost for Efficient Cloud Storage

Figure 4.10 illustrates the Cost for Efficient Cloud Storage, a crucial aspect within

the project's evaluation framework. This figure provides insights into the financial

implications of storing data in the cloud, considering factors such as storage

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

129

capacity, access frequency, redundancy options, and pricing models offered by cloud

service providers. By analyzing the cost for efficient cloud storage, stakeholders can

make informed decisions regarding resource allocation, budget planning, and cost

optimization strategies. The figure includes visual representations table, highlighting

the cost components and their respective contributions to the overall expenditure.

Understanding the cost implications of cloud storage is essential for maximizing

value and minimizing expenses within the project's context. This figure serves as a

valuable tool for evaluating and optimizing cloud storage solutions based on their

cost-effectiveness and alignment with project objectives.

 Figure 4.11: Data Center BenchCloud Comparison

Figure 4.11 presents the Data Center BenchCloud Comparison, a pivotal analysis

within the project's evaluation framework. This figure facilitates a comparative

assessment of data center performance, reliability, and efficiency across different

cloud service providers or configurations. By juxtaposing key metrics such as

response time, throughput, availability, and cost, stakeholders can gain insights into

the strengths and weaknesses of each data center solution. The figure include visual

representations bar charts, allowing for easy interpretation and comparison of

performance metrics. Understanding the differences between data center

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

130

benchmarks is crucial for making informed decisions regarding cloud provider

selection, resource allocation, and optimization strategies. This figure serves as a

valuable tool for evaluating and benchmarking data center solutions within the

project's context, ultimately contributing to the development of efficient and reliable

cloud computing environments.

Figure 4.12: Storage Cost Per Algorithm

Figure 4.12 illustrates the Storage Cost Per Algorithm, a key analysis within the

project's evaluation framework. This figure provides a comparative overview of the

storage costs associated with different algorithms or methods employed within the

cloud computing environment. By analyzing the cost-per-algorithm, stakeholders

can assess the financial implications of implementing specific algorithms for data

storage and management. The figure include visual representations such bar charts,

depicting the storage costs incurred by each algorithm over time or under varying

workload conditions. Understanding the cost implications of different storage

algorithms is essential for optimizing resource allocation, budget planning, and cost-

effectiveness strategies within the project's context. This figure serves as a valuable

tool for evaluating and selecting storage algorithms based on their cost-efficiency

and alignment with project objectives.

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

131

The "Data Centre BenchCloud Comparison" figure provides a visual representation

of the comparative analysis conducted on various cloud storage solutions within data

centers. In the context of thesis , this figure illustrates the cost-effectiveness and

efficiency of different cloud storage algorithms employed within data centers. It

likely compares factors such as storage capacity, data retrieval speeds, encryption

capabilities, and overall performance across different algorithms. By analyzing this

figure, can gain insights into which cloud storage algorithm offers the best balance

of cost, performance, and security for multimedia data storage system.

Similarly, the "Storage Cost Per Algorithm" figure presents a breakdown of the

storage costs associated with each algorithm utilized in the data center environment.

This figure helps us understand the financial implications of choosing one algorithm

over another in terms of storage expenses. By examining this figure alongside other

performance metrics, such as data retrieval speed and security features, can make

informed decisions about selecting the most cost-effective storage solution without

compromising on system performance or data security. Overall, both figures play a

crucial role in evaluating and optimizing the data storage infrastructure of thesis to

meet the requirements of multimedia data processing and control effectively.

4.8 Summary

 discussed the cloud storage mechanism for this scenario, including data

segmentation, deduplication, indexing, encryption, and data retrieval. also looked at

a comparative study of various routing protocols, including Rabin, TTTD, MAXP,

AE, and MDPC Algorithm. Next, talked about the utilisation of BenchCloud for this

scenario and how it can be used for benchmarking. also examined the effect of

concurrency and file size on file uploading and downloading performance and

showed tables to represent the results. Additionally, investigated the feasibility of

employing cloud storage as a storage backend for this scenario. Moving on,

discussed the results of benchmarking for a system consisting of novel routing

sensors and simulated sensors that gather data. also examined the readiness time for

file uploading and synchronisation clients' characteristics in table format with

explanations. Overall, the chat covered various topics related to the implementation

of a novel routing protocol for wireless multimedia sensor networks using the MDPC

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

132

algorithm, including cloud storage, benchmarking, and the feasibility of employing

cloud storage as a storage backend.

CHAPTER FIVE

CONCLUSION AND RECOMMENDATION

CHAPTER FIVE CONCLUSION AND RECOMMENDATION

134

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

The conclusion of thesis marks the culmination of extensive research, development,

and evaluation aimed at enhancing the performance and efficiency of large-scale

storage systems. Throughout this endeavour, primary objective was to design and

implement innovative mechanisms, leveraging techniques such as deduplication,

encryption, and MDPC algorithms, to address the growing challenges of managing

vast amounts of data in cloud-based environments. As reflect on the journey

undertaken and the outcomes achieved, it becomes evident that efforts have yielded

significant advancements in storage optimization, data security, and system

reliability.

One of the key achievements of thesis lies in the successful implementation of

deduplication techniques within the Cloud Storage System framework.

Deduplication, a process aimed at identifying and eliminating duplicate data

segments, has been instrumental in reducing storage overhead and enhancing data

retrieval speeds. By integrating deduplication mechanisms into storage system

architecture, have demonstrated tangible improvements in storage efficiency,

enabling organizations to store and manage data more cost-effectively.

Furthermore, thesis has explored the application of encryption techniques,

particularly the MDPC algorithm, to bolster data security in cloud storage

environments. Encryption plays a critical role in safeguarding sensitive information

from unauthorized access and ensuring data confidentiality during transmission and

storage. Through the integration of MDPC encryption into system, have

strengthened data protection measures, mitigating the risk of data breaches and

unauthorized tampering.

The comprehensive evaluation of proposed mechanisms, conducted through

extensive simulation experiments and comparative studies, has provided valuable

insights into their performance characteristics and effectiveness. By benchmarking

CHAPTER FIVE CONCLUSION AND RECOMMENDATION

135

solutions against existing algorithms and protocols, have identified areas of

improvement and highlighted the strengths and limitations of each approach. This

empirical validation process has not only validated the correctness of

implementations but has also informed strategic decision-making for system

optimization and refinement.

In conclusion, thesis represents a significant step forward in the quest for optimizing

storage systems to meet the evolving needs of modern organizations. By developing

and validating innovative mechanisms for data deduplication, encryption, and

management, have laid the groundwork for more resilient, efficient, and secure

storage infrastructures. As look to the future, the insights gained from this thesis

will serve as a roadmap for further advancements in storage technology, empowering

organizations to harness the full potential of their data assets in an increasingly

digital world.

Results and Validation Findings:

- Validation findings are based on the analysis of simulation results, comparative

studies, and benchmarking experiments conducted to evaluate the proposed

mechanism's performance and effectiveness.

- Results are presented and analyzed to identify trends, patterns, and disparities in

performance across different scenarios, workloads, and system configurations.

- Validation findings provide insights into the proposed mechanism's strengths,

limitations, and areas for improvement, guiding further refinements, optimizations,

and enhancements.

Implications and Recommendations:

- Validation results inform decision-making processes regarding the adoption,

refinement, or further development of the proposed mechanism.

- Insights gained from validation findings may lead to adjustments in algorithm

parameters, optimization techniques, or architectural enhancements to address

identified limitations and maximize performance benefits.

CHAPTER FIVE CONCLUSION AND RECOMMENDATION

136

- Recommendations based on validation findings may include additional testing,

refinement of implementation details, or validation against real-world datasets and

scenarios to further validate the proposed mechanism's effectiveness and suitability

for deployment.

In conclusion, the objective of verifying and validating the proposed mechanism

based on the results obtained from simulation experiments represents a critical

aspect of thesis . Through meticulous verification and validation efforts, ensure the

correctness, functionality, and effectiveness of the proposed mechanism, thereby

instilling confidence in its applicability and suitability for real-world deployment.

5.2 Recommendation

In this section, provide comprehensive recommendations derived from the insights

gained during the development and evaluation of the proposed mechanism. These

recommendations aim to guide future research, implementation, and deployment

efforts in the domain of storage optimization and deduplication techniques. By

addressing key areas of improvement, challenges, and opportunities, these

recommendations seek to enhance the effectiveness, efficiency, and applicability of

storage optimization mechanisms in diverse real-world scenarios.

Enhancing Deduplication Algorithms:

- There is a need for continued research and development in deduplication

algorithms to address emerging challenges posed by evolving data types, formats,

and storage infrastructures.

- Future efforts should focus on enhancing deduplication efficiency, scalability, and

adaptability to handle increasingly large-scale and heterogeneous datasets

encountered in modern storage systems.

- Investigating novel deduplication techniques, such as content-aware deduplication

and machine learning-based deduplication, can offer promising avenues for

improving deduplication effectiveness and reducing storage overhead.

Integration with Cloud and Edge Computing:

CHAPTER FIVE CONCLUSION AND RECOMMENDATION

137

- As storage systems increasingly leverage cloud and edge computing paradigms,

integrating deduplication mechanisms into cloud storage services and edge devices

becomes essential.

- Future research should explore techniques for efficient deduplication across

distributed storage environments, encompassing cloud data centers, edge nodes, and

IoT devices, to minimize data redundancy and optimize storage utilization.

- Developing lightweight and adaptive deduplication algorithms tailored for edge

computing environments can facilitate efficient data management, reduce network

bandwidth consumption, and enhance overall system performance.

Addressing Security and Privacy Concerns:

- Security and privacy considerations are paramount in storage optimization

mechanisms, particularly in deduplication, where data confidentiality and integrity

are critical.

- Future research efforts should focus on enhancing the security and privacy aspects

of deduplication algorithms to mitigate risks associated with data exposure,

unauthorized access, and privacy breaches.

- Exploring cryptographic techniques, access control mechanisms, and privacy-

preserving deduplication approaches can help bolster the security posture of

deduplication systems and ensure compliance with regulatory requirements and

privacy standards.

Adoption of Hybrid Deduplication Strategies:

- Hybrid deduplication approaches, combining inline, post-process, and source-

based deduplication techniques, offer opportunities to optimize storage efficiency

while minimizing performance overhead.

- Future implementations should consider adopting hybrid deduplication strategies

tailored to specific use cases, workloads, and storage environments, leveraging the

CHAPTER FIVE CONCLUSION AND RECOMMENDATION

138

strengths of each deduplication approach to achieve optimal storage optimization

and performance benefits.

- Evaluating the trade-offs between deduplication overhead, resource utilization, and

performance gains can inform the selection and configuration of hybrid

deduplication strategies for diverse storage scenarios.

Standardization and Interoperability:

- Establishing standards and interoperability protocols for deduplication

mechanisms can facilitate seamless integration, compatibility, and interoperability

across heterogeneous storage platforms, systems, and vendors.

- Collaborative efforts involving industry consortia, standards bodies, and academia

are essential to define common interfaces, protocols, and data formats for

deduplication, enabling interoperable implementations and ecosystem-wide

adoption.

- Promoting open-source initiatives and community-driven development models can

foster innovation, collaboration, and knowledge sharing in the field of storage

optimization, driving the evolution of deduplication technologies and practices.

Continuous Evaluation and Benchmarking:

- Continuous evaluation and benchmarking of deduplication mechanisms are crucial

to monitor performance trends, identify bottlenecks, and assess the impact of

algorithmic changes and optimizations.

- Establishing standardized benchmarking frameworks, datasets, and evaluation

metrics can facilitate comparative analysis, reproducibility, and fair assessment of

deduplication algorithms across different research studies and implementations.

- Encouraging transparency, sharing of experimental results, and peer-reviewed

validation of deduplication techniques can foster trust, credibility, and rigor in the

evaluation and validation process, advancing the state-of-the-art in storage

optimization research.

CHAPTER FIVE CONCLUSION AND RECOMMENDATION

139

 Real-world Deployment and Validation:

- Validating deduplication mechanisms in real-world production environments is

essential to assess their practicality, effectiveness, and suitability for deployment in

mission-critical storage systems.

- Future research should emphasize real-world deployment studies, field trials, and

case studies to evaluate the performance, reliability, and scalability of deduplication

mechanisms in diverse enterprise, cloud, and edge computing environments.

- Collaborating with industry partners, cloud service providers, and data center

operators can facilitate access to real-world datasets, infrastructure, and expertise,

enabling comprehensive validation and validation of deduplication solutions in

operational settings.

In conclusion, the aforementioned recommendations serve as guiding principles for

advancing the state-of-the-art in storage optimization and deduplication techniques.

By addressing key challenges, leveraging emerging technologies, and embracing

collaborative research and development efforts, the storage community can drive

innovation, efficiency, and sustainability in storage systems, paving the way for a

data-driven future.

5.3 Future Scope

The future researchers may have the scope to discuss in detail about the network cost

of the cloud storage system. They will have the opportunity to analyse the cost

required to be paid by the users in order to move data from cloud storage systems to

another location or the network. The future researchers will also have the scope to

focus on the data backup factor of the cloud storage network system. They will have

the opportunity to discuss the possible reasons for losing all the important data while

operating in the cloud-based storage system. They can also find the best possible

ways to allocate particular locations to particular information and data provided by

the users.

CHAPTER FIVE CONCLUSION AND RECOMMENDATION

140

The future researchers will have the scope to discuss how conscious duplication of

any data can affect the cloud storage system. They can also discuss the implications

of backup software in order to retain important data. They will have the opportunity

to concentrate on the concept of data migration. They will have the possibility to

explore the process of shifting from one cloud storage system to the by the users. It

will help the researchers to discuss various new aspects of implementing cloud

storage systems on the IOT environments.

REFERENCES

REFERENCES

142

REFERENCES

[1] Intel, Developing solutions for Internet of Things, White paper on Internet of

Things, www.intel.com/IoT.

[2] Junkin, V. Improving clinical reasoning skills by implementing the OPT model

[dissertation]. Tuscaloosa: University of Alabama; 2018.

[3] Erturk, E., & Iles, H. R. E. (2015). Case study on cloud based library software as

a service: Evaluating EZproxy. arXiv preprint arXiv:1511.07578.

[4] Vermesan, O., & Friess, P. (Eds.). (2013). Internet of things: converging

technologies for smart environments and integrated ecosystems. River publishers.

[5] R. Vinoth and L. J. Deborah, “A survey on efficient storage and retrieval system

for the implementation of data deduplication in cloud,” SpringerLink,

https://link.springer.com/chapter/10.1007/978-3-030-43192-1_95

[6] Vestergaard, R., Zhang, Q., & Lucani, D. E. (2019, December). Lossless

compression of time series data with generalized deduplication. In 2019 IEEE

Global Communications Conference (GLOBECOM) (pp. 1-6). IEEE.

[7] Vijayalakshmi, K., & Jayalakshmi, V. (2021, April). Analysis on data

deduplication techniques of storage of big data in cloud. In 2021 5th International

Conference on Computing Methodologies and Communication (ICCMC) (pp. 976-

983). IEEE.

[8] Ellappan, M. (2021). Dynamic Prime Chunking Algorithm for Data

Deduplication in Cloud Storage. KSII Transactions on Internet & Information

Systems, 15(4).

REFERENCES

143

[9] Anitha, P., Dhanushram, R., Sudhan, D. H., & Indhresh, T. R. S. (2021, May).

Security Aware High Scalable paradigm for Data Deduplication in Big Data cloud

computing Environments. In Journal of Physics: Conference Series (Vol. 1916, No.

1, p. 012097). IOP Publishing.

[10] Xu, Z., & Zhang, W. (2021, September). Quickcdc: A quick content defined

chunking algorithm based on jumping and dynamically adjusting mask bits. In 2021

IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data &

Cloud Computing, Sustainable Computing & Communications, Social Computing

& Networking (ISPA/BDCloud/SocialCom/SustainCom) (pp. 288-299). IEEE.

[11] Kumar, N., Shobha, & Jain, S. C. (2019). Efficient data deduplication for big

data storage systems. In Progress in Advanced Computing and Intelligent

Engineering: Proceedings of ICACIE 2017, Volume 2 (pp. 351-371). Springer

Singapore.

[12] Fan, Y., Lin, X., Liang, W., Tan, G., & Nanda, P. (2019). A secure privacy

preserving deduplication scheme for cloud computing. Future Generation

Computer Systems, 101, 127-135.

[13] H. A. Jasim and A. A. Fahad, New Techniques to Enhance Data Deduplication

using Content based-TTTD Chunking Algorithm , International Journal of

Advanced Computer Science and Applications, Vol. 9, No. 5, 2018

[14] Wu, H., Wang, C., Lu, K., Fu, Y., & Zhu, L. (2018, May). One size does not

fit all: The case for chunking configuration in backup deduplication. In 2018 18th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(CCGRID) (pp. 213-222). IEEE.

REFERENCES

144

[15] Oh, M., Park, S., Yoon, J., Kim, S., Lee, K. W., Weil, S., ... & Jung, M. (2018).

Design of Global Data Deduplication for a Scale-Out Distributed Storage System.

IEEE 38th International Conference on Distributed Computing Systems (ICDCS),

2–6 July 2018, 1063–1073.

[16] Xia, W., Zhou, Y., Jiang, H., Feng, D., Hua, Y., Hu, Y., ... & Zhang, Y. (2016).

{FastCDC}: A fast and efficient {Content-Defined} chunking approach for data

deduplication. In 2016 USENIX Annual Technical Conference (USENIX ATC 16)

(pp. 101-114).

[17] Xu, X., & Tu, Q. (2015, September). Data deduplication mechanism for cloud

storage systems. In 2015 international conference on cyber-enabled distributed

computing and knowledge discovery (pp. 286-294). IEEE.

[18] Kirubakaran, R., Prathibhan, C. M., & Karthika, C. (2015, March). A cloud

based model for deduplication of large data. In 2015 IEEE international conference

on engineering and technology (ICETECH) (pp. 1-4). IEEE.

[19] Maruti, M. V., & Nighot, M. K. (2015, October). Authorized data Deduplication

using hybrid cloud technique. In 2015 International Conference on Energy Systems

and Applications (pp. 695-699). IEEE.

[20] Xu, X., Hu, N., & Tu, Q. (2016, October). Two-side data deduplication

mechanism for non-center cloud storage systems. In 2016 IEEE International

Conference on Ubiquitous Wireless Broadband (ICUWB) (pp. 1-4). IEEE.

[21] Zhang, Y., Jiang, H., Feng, D., Xia, W., Fu, M., Huang, F., & Zhou, Y. (2015,

April). AE: An asymmetric extremum content defined chunking algorithm for fast

REFERENCES

145

and bandwidth-efficient data deduplication. In 2015 IEEE Conference on Computer

Communications (INFOCOM) (pp. 1337-1345). IEEE.

[22] Leesakul, W., Townend, P., & Xu, J. (2014, April). Dynamic data deduplication

in cloud storage. In 2014 IEEE 8th International Symposium on Service Oriented

System Engineering (pp. 320-325). IEEE.

[23] Krishnaprasad, P. K., & Narayamparambil, B. A. (2013, August). A proposal

for improving data deduplication with dual side fixed size chunking algorithm. In

2013 Third International Conference on Advances in Computing and

Communications (pp. 13-16). IEEE.

[24] Luo, S., & Hou, M. (2013, December). A novel chunk coalescing algorithm for

data deduplication in cloud storage. In 2013 IEEE Jordan Conference on Applied

Electrical Engineering and Computing Technologies (AEECT) (pp. 1-5). IEEE.

[25] Xia, W., Zhou, Y., Jiang, H., Feng, D., Hua, Y., Hu, Y., ... & Zhang, Y. (2016).

{FastCDC}: A fast and efficient {Content-Defined} chunking approach for data

deduplication. In 2016 USENIX Annual Technical Conference (USENIX ATC 16)

(pp. 101-114).

[26] V. Balas C. Jain X. Zhao , Information Technology and Intelligent

Transportation Systems , Volume 2, 2015

[27] Begum, M. J., & Haritha, B. (2020). Data Deduplication Strategies in Cloud

Computing. International Journal of Innovative Science and Research Technology,

5(8), 734-738.

REFERENCES

146

[28] Burramukku, Tirapathi & Ramya, U. & Sekhar, M.V.P.. (2016). A comparative

study on data deduplication techniques in cloud storage. 8. 18521-18530.

[29] A. Venish and K. S. Sankar, "Study of chunking algorithm in data

deduplication," in Proc. of International Conference on Soft Computing Systems,

pp. 13-20, 2016.

[30] N. Bjorner, A. Blass, and Y. Gurevich, "Content-dependent chunking for

differential compression, the local maximum approach," Journal of Computer and

System Sciences, vol. 76, no. 3-4, pp. 154-203, 2010.

https://doi.org/10.1016/j.jcss.2009.06.004

[31] M. Rabin, “Fingerprinting by random polynomials, no. tr-15-81,” Cambridge,

MA, USA: Center for Research in Computing Techn., Aiken Computation

Laboratory, Harvard Univ, pp. 15–18, 1981.

[32] R. Raju, M. Moh, and T. Moh, “Compression of wearable body sensor network

data using improved two-threshold-two-divisor data chunking algorithms,” in 2018

International Conference on High Performance Computing Simulation (HPCS), July

2018, pp. 949–956.

[33] N. Bjørner, A. Blass, and Y. Gurevich, “Content-dependent chunking for

differential compression, the local maximum approach,” J. Comput. Syst. Sci., vol.

76, no. 3-4, pp. 154–203, May 2010. [Online]. Available:

http://dx.doi.org/10.1016/j.jcss.2009.06.004

[34] Y. Zhang, D. Feng, H. Jiang, W. Xia, M. Fu, F. Huang, and Y. Zhou, “A fast

asymmetric extremum content defined chunking algorithm for data deduplication in

REFERENCES

147

backup storage systems,” IEEE Transactions on Computers, vol. 66, no. 2, pp. 199–

211, Feb 2017

[35] R. N. S. Widodo, H. Lim, and M. Atiquzzaman, “A new content-defined

chunking algorithm for data deduplication in cloud storage,” Future Generation

Computer Systems, vol. 71, pp. 145–156, 2017

[36] Y. Tan and Z. Yan, “Multi-objective metrics to evaluate deduplication

approaches,” IEEE Access, vol. 5, pp. 5366–5377, 2017

[37] W. Tian, R. Li, Z. Xu, and W. Xiao, “Does the content defined chunking really

solve the local boundary shift problem?” in 2017 IEEE 36th International

Performance Computing and Communications Conference (IPCCC), Dec 2017, pp.

1–8

[38] C. Zhang, D. Qi, Z. Cai, W. Huang, X. Wang, W. Li, and J. Guo, “Mii: A novel

content defined chunking algorithm for finding incremental data in data

synchronization,” IEEE Access, vol. 7, pp. 86 932–86 945, 2019.

[39] B. Chapuis, B. Garbinato, and P. Andritsos, “Throughput: A key performance

measure of content-defined chunking algorithms,” in 2016 IEEE 36th International

Conference on Distributed Computing Systems Workshops (ICDCSW), June 2016,

pp. 7–12

[40] Habeeb, Ahmed. (2018). Introduction to Secure Hash Algorithms.

10.13140/RG.2.2.11090.25288.

REFERENCES

148

[41] López, C. C., Crama, Y., Pironet, T., & Semet, F. (2024). Multi-period

distribution networks with purchase commitment contracts. European Journal of

Operational Research, 312(2), 556-572.

[42] Kumar, A., de Jesus Pacheco, D. A., Kaushik, K., & Rodrigues, J. J. P. C.

(2022). Futuristic view of the internet of quantum drones: review, challenges and

research agenda. Veh. Commun. 36, 100487 (2022).

[43] Guimarães, A., Aranha, D. F., & Borin, E. (2019). Optimized implementation

of QC‐MDPC code‐based cryptography. Concurrency and Computation: Practice

and Experience, 31(18), e5089.

[44] Drucker, N., Gueron, S., & Kostic, D. (2020, June). Fast polynomial inversion

for post quantum QC-MDPC cryptography. In International Symposium on Cyber

Security Cryptography and Machine Learning (pp. 110-127). Cham: Springer

International Publishing.

[45] H. Guesmi and L. A. Saïdane, "Improved Data Storage Confidentiality in Cloud

Computing Using Identity-Based Cryptography," 2017 25th International

Conference on Systems Engineering (ICSEng), Las Vegas, NV, USA, 2017, pp.

324-330, doi: 10.1109/ICSEng.2017.32.

[46] Lee, H. N., Kim, Y. S., Singh, D., & Kaur, M. (2022). Green Bitcoin: Global

Sound Money. arXiv preprint arXiv:2212.13986.

[47] Kumar, S., Banka, H., Kaushik, B., & Sharma, S. (2021). A review and analysis

of secure and lightweight ECC‐based RFID authentication protocol for Internet of

Vehicles. Transactions on Emerging Telecommunications Technologies, 32(11),

e4354.

REFERENCES

149

[48] Thalapala, V. S., Mohan, A., & Guravaiah, K. (2022). Woaccpp: Wisdom of

artificial crowds for controller placement problem with latency and reliability in

sdn-wan.

[49] Rahimi, S., Jackson, R., Farahibozorg, S. R., & Hauk, O. (2023). Time-

Lagged Multidimensional Pattern Connectivity (TL-MDPC): An EEG/MEG

pattern transformation based functional connectivity metric. NeuroImage, 270,

119958.

[50] Jamali, S., Talebi, M. M., & Fotohi, R. (2021). Congestion control in high‐

speed networks using the probabilistic estimation approach. International

Journal of Communication Systems, 34(7), e4766.

[51] Aravkin, A., Kumar, R., Mansour, H., Recht, B., & Herrmann, F. J. (2014). Fast

methods for denoising matrix completion formulations, with applications to robust

seismic data interpolation. SIAM Journal on Scientific Computing, 36(5), S237-

S266.

[52] Jamali, S., Talebi, M. M., & Fotohi, R. (2021). Congestion control in high‐

speed networks using the probabilistic estimation approach. International Journal

of Communication Systems, 34(7), e4766.

[53] Gill, S. S., Kumar, A., Singh, H., Singh, M., Kaur, K., Usman, M., & Buyya,

R. (2022). Quantum computing: A taxonomy, systematic review and future

directions. Software: Practice and Experience, 52(1), 66-114.

[54] Xie, H., Qin, Z., Li, G. Y., & Juang, B. H. (2021). Deep learning enabled

semantic communication systems. IEEE Transactions on Signal Processing, 69,

2663-2675.

REFERENCES

150

[55] Aragon, N., Gaborit, P., Hauteville, A., Ruatta, O., & Zémor, G. (2019). Low

rank parity check codes: New decoding algorithms and applications to cryptography.

IEEE Transactions on Information Theory, 65(12), 7697-7717.

[56] Ravi, P., Najm, Z., Bhasin, S., Khairallah, M., Gupta, S. S., & Chattopadhyay,

A. (2019). Security is an architectural design constraint. Microprocessors and

microsystems, 68, 17-27.

[57] Eshghi, K., & Tang, H. K. (2005). A framework for analyzing and improving

content-based chunking algorithms. Hewlett-Packard Labs Technical Report TR,

30(2005).

[58] Zhang, Y., Jiang, H., Feng, D., Xia, W., Fu, M., Huang, F., & Zhou, Y. (2015,

April). AE: An asymmetric extremum content defined chunking algorithm for fast

and bandwidth-efficient data deduplication. In 2015 IEEE Conference on Computer

Communications (INFOCOM) (pp. 1337-1345). IEEE.

[59] N. A. Et al., “An enhanced approach to improve the security and performance

for deduplication,” Turkish Journal of Computer and Mathematics Education

(TURCOMAT), vol. 12, no. 6, pp. 2866–2882, 2021.

doi:10.17762/turcomat.v12i6.5797

[60] Vuong, H., Nguyen, H., & Tran, L. (2022). A Design of Parallel Content-

Defined Chunking System Using Non-Hashing Algorithms on FPGA. IEEE Access,

10, 82036-82048.

[61] Saranya, R., Vidhya, S., Muthumari, M., & Sangeerthana, B. Data

Deduplication in Cloud by Chunking.

REFERENCES

151

[62] M. Mister, “10 advantages and disadvantages of cloud storage,” Organize and

Access Files From Anywhere, https://www.promax.com/blog/10-advantages-and-

disadvantages-of-cloud-storage

[63] Viji, D., & Revathy, S. (2021). Comparative analysis for content defined

chunking algorithms in data deduplication. Webology, 18(SpecialIssue2), 255-268.

[64] u-next.com, “Top 10 advantages and disadvantages of cloud storage: Unext,”

UNext, https://u-next.com/blogs/cloud-computing/top-10-advantages-and-

disadvantages-of-cloud-storage/

[65] A. S. Gillis, “What is IOT (internet of things) and how does it work? - definition

from techtarget.com,” IoT Agenda,

https://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT

[66] Xia, W., Zou, X., Jiang, H., Zhou, Y., Liu, C., Feng, D., ... & Zhang, Y. (2020).

The design of fast content-defined chunking for data deduplication based storage

systems. IEEE Transactions on Parallel and Distributed Systems, 31(9), 2017-2031.

[67] Viji, D., & Revathy, S. (2021). Comparative analysis for content defined

chunking algorithms in data deduplication. Webology, 18(SpecialIssue2), 255-268.

[68] Yoon, M. (2019). A constant-time chunking algorithm for packet-level

deduplication. ICT Express, 5(2), 131-135.

[69] Vuong, H., Nguyen, H., & Tran, L. (2022). A Design of Parallel Content-

Defined Chunking System Using Non-Hashing Algorithms on FPGA. IEEE Access,

10, 82036-82048.

[70] Jeong, Y. S., & Park, J. H. (2018). Advanced data processing, optimization &

software engineering. Journal of Information Processing Systems, 14(5), 1063-1067.

https://www.promax.com/blog/10-advantages-and-disadvantages-of-cloud-storage
https://www.promax.com/blog/10-advantages-and-disadvantages-of-cloud-storage
https://u-next.com/blogs/cloud-computing/top-10-advantages-and-disadvantages-of-cloud-storage/
https://u-next.com/blogs/cloud-computing/top-10-advantages-and-disadvantages-of-cloud-storage/
https://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT

REFERENCES

152

[71] Jeong, Y. S., & Park, J. H. (2018). Advanced data processing, optimization &

software engineering. Journal of Information Processing Systems, 14(5), 1063-

1067.

[72] Saeed, A. S. M., & George, L. E. (2020). Data deduplication system based on

content-defined chunking using bytes pair frequency occurrence. Symmetry,

12(11), 1841.

[73] www.zdnet.com, “What is the iot? everything you need to know about the

internet of things right now,” ZDNET, https://www.zdnet.com/article/what-is-the-

internet-of-things-everything-you-need-to-know-about-the-iot-right-now/

[74] Yash Arora • May 27th, I. S. Ganiyu, Y. Arora, and K. Tolety,

“Data Segmentation in data mining: Strategy talks & more,” Hevo,

https://hevodata.com/learn/data-segmentation-in-data-mining/ .

[75] S. Hiter, “What is data segmentation?: Datamation: Security,” Datamation,

https://www.datamation.com/security/data-segmentation/ .

[76] Iliev, I., Sulikovska, I., Ivanova, E., Dimitrova, M., Nikolova, B., &

Andreeva, C. (2022). Validation of a Light Source for Phototoxicity in in vitro

Conditions. International Journal Bioautomation, 26(2), 141.

[77] C. S. N. Koushik, S. B. Choubey, A. Choubey, and G. R. Sinha, “Study of data

deduplication for file chunking approaches,” Data Deduplication Approaches, pp.

111–124, 2021. doi:10.1016/b978-0-12-823395-5.00008-2

[78] G.R. Sinha, Tin Thein Thwel, Samrudhi Mohdiwale, and Divya Prakash

Shrivastava, "Data Deduplication Approaches: Concepts, Strategies, and

https://hevodata.com/learn/data-segmentation-in-data-mining/
https://www.datamation.com/security/data-segmentation/

REFERENCES

153

Challenges," in Data Deduplication Approaches, 2021, pp. 1-15.

https://doi.org/10.1016/B978-0-12-823395-5.00019-7

[79] K. Vijayalakshmi and V. Jayalakshmi, "Analysis on data deduplication

techniques of storage of big data in cloud," in International Conference.

[80] Srinivasan, Karthik, et al. "Secure multimedia data processing scheme in

medical applications." Multimedia Tools and Applications (2022): 1-12.

[81] Kumari, Aparna, and Sudeep Tanwar. "A secure data analytics scheme for

multimedia communication in a decentralized smart grid." Multimedia Tools and

Applications 81.24 (2022): 34797-34822.

[82] Dhar, Shalini, Ashish Khare, and Rajani Singh. "Advanced security model for

multimedia data sharing in Internet of Things." Transactions on Emerging

Telecommunications Technologies 34.11 (2023): e4621.

[83] Sharma, Neha, Chinmay Chakraborty, and Rajeev Kumar. "Optimized

multimedia data through computationally intelligent algorithms." Multimedia

Systems 29.5 (2023): 2961-2977.

https://doi.org/10.1016/B978-0-12-823395-5.00019-7

REFERENCES

154

