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ABSTRACT 

This thesis aims to address the pressing need for efficient and secure management 

of multimedia data in today's digital landscape. Motivated by the growing volume 
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and importance of multimedia data, the thesis  endeavors to develop a 

comprehensive multimedia data management system. The primary problem 

addressed is the challenge of ensuring efficient storage and retrieval while 

maintaining data integrity and security in cloud storage environments. 

Methodologically, the thesis leverages various techniques, including data retrieval, 

encryption, deduplication, and performance simulation, to tackle this challenge 

comprehensively. Data retrieval is facilitated through a robust mechanism designed 

to efficiently access multimedia data stored in cloud storage systems. By employing 

structured tables and utilizing identifiers, segment numbers, and hash values, data 

retrieval ensures both integrity and efficiency. 

Security is a paramount concern, and to address it, the system employs symmetric 

encryption techniques such as the Advanced Encryption Standard (AES). Each 

multimedia segment undergoes encryption using a unique encryption key, ensuring 

confidentiality during storage and transmission, thereby safeguarding against 

unauthorized access and potential data breaches. 

Furthermore, storage redundancy is minimized, and resource utilization optimized 

through deduplication techniques. By maintaining a hash table and identifying 

duplicate multimedia segments, the system conserves storage space and enhances 

overall efficiency, reducing the risk of data inconsistency. 

The thesis also includes simulations for file transfer times and throughput, 

considering various file sizes and concurrency levels. These simulations provide 

valuable insights into system performance under diverse conditions, enabling 

informed decision-making and optimization strategies. 

Through the integration of key generation, block processing, and MDPC algorithm 

implementation, the multimedia data management system offers enhanced 

functionality and performance. Overall, this research yields a comprehensive 

solution for the efficient, secure, and optimized handling of multimedia data in cloud 

storage environments. 
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CHAPTER-1 

INTRODUCTION 

1.1 Introduction  

In our increasingly digital world, data has become a precious asset driving 

innovation and efficiency across industries. However, managing this vast and 

diverse volume of data poses significant challenges, particularly in the context of 

IoT environments. Traditional storage solutions are often insufficient, prompting the 

adoption of cloud storage as a versatile alternative. Cloud storage not only offers 

ample space but also accessibility and security, making it an attractive option for IoT 

applications. The integration of  (AI) and cloud systems further enhances the 

potential of IoT data, enabling efficient mining and analysis. IoT's embedded 

intelligence empowers sensors to collect and analyze data, revolutionizing processes 

across various sectors. Cloud storage facilitates the storage and processing of this 

data, paving the way for enhanced operations and insights. [1] Despite its benefits, 

cloud storage in IoT environments comes with its share of concerns, particularly 

regarding security and control. Entrusting sensitive data to third-party providers 

raises apprehensions about data integrity and privacy. Additionally, challenges such 

as data migration and dependency on internet connectivity must be addressed. [2] 

While cloud storage offers advantages such as   disaster recovery, scalability, and 

cost-effectiveness, it also poses challenges related to data control, vendor lock-in, 

and connectivity issues. Understanding these pros and cons is essential for 

organizations considering the adoption of cloud storage solutions in IoT 

applications. [3] In conclusion, cloud storage holds promise for revolutionizing data 

management in IoT environments, offering both benefits and challenges. By 

carefully evaluating its implications and addressing potential drawbacks, 

organizations can leverage cloud storage to unlock the full potential of IoT data 

while ensuring security and efficiency in their operations. [4] 
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Figure 1.1: Cloud Storage [3] 

1.2 Cloud Storage Mechanism  

Every cloud has a certain amount of storage, so if start uploading duplicate 

information, the storage will be lost, and dealing with data redundancy will become 

a major issue. Researchers have been investigating numerous techniques to combat 

this, and data deduplication is the best answer. A method called data deduplication 

was developed to improve storage [77]. Different cloud service providers, including 

Dropbox, Amazon S3 and Google Drive, now use this strategy. Data duplication is 

prevented by making sure it is never uploaded to the cloud more than once. 

A. As the amount of digital data grows, so does the need for greater storage space. 

B. Traditional solutions don't have any built-in protection against duplicate data 

being saved up.  

C. Data De-duplication is critical for removing redundant data and lowering 

storage costs. 

The quantity of data generated is growing exponentially in quickly developing 

digital age. The demand for more storage space has grown as more areas of life, from 

social media interactions to business transactions, are becoming digitalized. This 

article looks at how inadequate present storage capabilities are for keeping up with 

the rate of expansion in digital data and the significance of finding a solution. 
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● A Partial Solution: The increased need for storage space has a partial solution 

in the form of cloud storage. Cloud service providers can offer scalable 

storage options to consumers and businesses by utilising the enormous 

capabilities of data centres. This method, however, has its own set of 

drawbacks, such as worries about data privacy, security lapses, and 

dependence on outside sources [9]. Additionally, the cost of storing 

significant amounts of data on the cloud can rise significantly, particularly for 

long-term retention. 

● Explosive Growth of Digital Data: The internet's rising use, the widespread 

use of smartphones, and the rise of connected gadgets have all contributed to 

the digital revolution's data explosion. The amount of digital data is always 

growing because of all online interactions, transactions, sensor readings, and 

media uploads.  

● New Technologies for Data-Intensive Systems: The problem with storage is 

made worse by the emergence of data-intensive technologies like artificial 

intelligence, machine learning , and big data analytics. Massive datasets are 

needed for these applications in order to build models and gain insightful 

knowledge.  Additionally, the growing use of virtual reality, augmented 

reality, and high-definition multimedia content puts extra pressure on storage 

infrastructure by necessitating higher capacity and quicker data retrieval. 

The lack of storage capacity is becoming an urgent issue as the digital world 

develops. Finding scalable and effective storage solutions is urgent given the 

exponential growth of digital data and the rising demand for data-intensive 

applications. While cloud storage provides a partial solution, research into next-

generation storage systems is necessary to make sure that the storage infrastructure 

can sustain the ever-growing digital world [11]. It can fulfil the increasing need for 

storage space and unleash every advantage of the digital age by making investments 

in technology development and promoting innovation.  

The problem of redundant information has grown significantly in importance in the 

era of expanding digital data. Traditional storage solutions frequently do not have 

built-in duplicate data management tools. The significance of data deduplication in 

eliminating redundant data and lowering storage costs is highlighted in this article. 

Duplicate data refers to information that is identical and spread across different 

locations in a storage system. It may be caused by a number of things, including user 
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error, system backups, or data replication procedures [13]. Duplicate data not only 

takes up valuable storage space, but it also drives up prices, slows down data 

retrieval, and uses resources inefficiently. Hard disc drives (HDDs) and solid-state 

drives (SSDs), two common types of traditional storage, lack built-in techniques for 

locating and removing duplicate data. Organisations can considerably reduce their 

storage needs by getting rid of duplicate data. However, ensuring that only one copy 

of each piece of information is stored, data deduplication increases data efficiency. 

Enhancing data integrity means reducing duplicate data [14]. Duplicate data can 

cause conflicts and inconsistencies, jeopardising the accuracy and dependability of 

data that is kept. Disaster recovery procedures might be hampered by duplicate data 

since it increases backup and restore times.  In today's data-driven world, adopting 

data de-duplication is essential for effectively managing and maximising the value 

of digital data. 

1.3 Literature Survey  

K. Vijayalakshmi and V. Jayalakshmi in (2021) [7] suggest data duplication in 

clouds, which is managed using the de-duplication technique. Although some de-

duplication techniques are used to prevent data redundancy, they are inefficient. The 

major goal of this research is to gain enough knowledge and a decent concept of de-

duplication techniques through reviewing existent ways, and this work may aid 

future research in establishing effective cloud storage management (CSM) solutions 

for researchers. 

M. Ellappan and S. Abirami in (2021) [8] suggest a novel chunking algorithm called 

Dynamic Prime Chunking (DPC). DPC's major purpose is to modify the window 

size during the prime value dynamically rely on the maximum and minimal chunk 

size. DPC in the de-duplication scheme gives good throughput while avoiding large 

chunk variance. The multimedia and operating system datasets were used for 

implementation and experimental evaluation. Existing algorithms such as AE, 

MAXP, TTTD, and Rabin have been compared to DPC. The performance indicators 

looked at were throughput, chunk count, Bytes Saved per Second (BSPS), chunking 

time, processing time and De-duplication removal Ratio (DER). BSPS and 

throughput have both improved. To begin, DPC boosts throughput performance by 
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greater than 21% when compared to AE. BSPS improves performance by up to 11% 

over the previous AE method. 

P.Anitha et al. in (2021) [9] the secure authorities are given access control 

mechanisms to do data de-duplication (DD) on the data that was outsourced. 

Encryption techniques are used in the Access Control Mechanism. It employs 

convergent randomised encryption and a reliable distribution of owning party keys 

to allow the cloud service provider to manage outsourced data access even when 

control shifts on a regular basis. The suggested technique safeguards data integrity 

against attacks relies on label discrepancies. As a precaution, the suggested 

technique has been changed to improve security. 

Xu and W. Zhang in (2021) [10] QuickCDC improves CDC chunking speed, de-

duplication ratio, and throughput by combining three methods. Initially, QuickCDC 

can move instantly to the chunk boundaries of duplicate chunks that arise frequently. 

The mapping of the duplicate chunk's first n bytes and last m bytes to chunk length 

must be registered. The first n bytes and last m bytes of the current chunk are checked 

to see if they are in the mapping table when chunking is performed. QuickCDC can 

skip relevant chunk lengths (CL) if they are in the mapping table. QuickCDC can 

skip the minimal chunk length for unique chunks. Finally, QuickCDC may 

dynamically alter mask bits length such that chunk length (CL) is permanently more 

than the minimal chunk length and is distributed in a limited particular location. 

When the current chunk length (CL) is less than the expected chunk length (CL), 

should use longer mask bits, and when the current chunk length (CL) is more than 

the expected chunk length (CL), should utilize shorter mask bits. Experiments show 

that QuickCDC's chunking speed is 11.4x that of RapidCDC, and the associated de-

duplication ratio is somewhat increased, with a maximum de-duplication ratio 

improvement of 222.3% and a throughput improvement of 111.4%. 

N. Kumar and S. Jain in (2019) [11] suggest Differential Evolution DE-rely on 

TTTD-P optimized chunking to maximize chunking throughput while increasing de-

duplication ratio DR The use of a scalable bucket indexing strategy minimizes the 

time it takes to find and declare duplicated hash values (HV). It chunks about 16 

times greater than Rabin CDC, 5 times greater than AE CDC, and 1.6 times greater 

than FAST CDC (HDFS). 
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Y. Fan et al., in (2019) [12] system improves the capacity of like cryptosystems to 

resist selected plaintext and selection ciphertext attacks by augmenting convergent 

encryption with users' privileges and relying on TEE to provide secure key 

management. system is secured sufficient to facilitate data de-duplication (DD) as 

well as protecting the privacy of sensitive data, according to a security analysis. 

Moreover, create a prototype of system and analyze its performance. Experiments 

reveal that system overhead is practical in real-world scenarios. 

H. A. Jasim and A. A. Fahad, in (2018) [13] novel fingerprint function (FF), a multi-

level hashing and matching mechanism, and a novel indexing technicality to hold 

metadata to progress the TTTD chunking algorithm. These novel technicalities 

include four hashing algorithms to handle the collision issue, as well as adding a 

novel chunk stipulation to the TTTD chunking criterion to improve the number of 

small chunks and hence the De-duplication Ratio. 

H. Wu. In (2018) [14] suggests a sampling-rely on chunking algorithm and improve 

SmartChunker, a tool to predict the appropriate chunking configuration for de-

duplication schemes. Smart Chunk's effectiveness and efficacy have been 

demonstrated in real-world datasets. 

M. Oh et al., in (2018) [15] suggest novel de-duplication technique that is extremely 

compatible and scalable with the exhausted storage currently in use. The approach 

combines file system and de-duplication meta-information into a single object, and 

it manages the de-duplication ratio online through initial aware of post-processing-

related scheme demands. When executing a variety of standard storage workloads, 

the experimental findings illustrate that solution could save greater than 90% of total 

storage space while providing the same or similar performance as traditional scale-

out storage. 

W. Xia et al. in (2016) [16] suggest FastCDC, a Fast and effective CDC approach, 

which constructs and enhances on the latest Gear-based on CDC technique, one of 

the fastest CDC techniques to knowledge. FastCDC's main idea is to integrate five 

key mechanics: gear-rely on rapid rolling hash, improving and simplifying Gear hash 

(GH) verdict, skipping sub-minimal chunk cut-points, normalizing the chunk-size 

distribution in a small specific region to address the issue of reduction de-duplication 
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ratio caused by cut-point skipping. FastCDC is around 10 times quicker than the best 

open- source Rabin-based on CDC, and about 3 times greater than the state-of-the-

art Gear- and AE-rely on CDC, while obtaining almost the same de-duplication ratio 

as the standard Rabin-rely solution, according to evaluation results. 

X. Xu. et al. in (2016) [17] focus on non-center cloud storage data de-duplication 

and present a new two-side data de-duplication (DD) mechanism. The Chord 

algorithm (CA) is optimized. The suggested two-side data de-duplication (DD) 

technique outperforms the traditional data de-duplication (DD) mechanism in terms 

of de-duplication rate. 

R. Kiruba karan et al. in (2015) [18] present a cloud-based technique for achieving 

de-duplication of a huge amount of data available. The approach includes data de-

duplication before uploading to cloud storage as well as data reverse de-duplication 

when obtaining the required data. The model is more effective and accurate than 

existing de-duplication systems because of the type of algorithm utilized. 

V. Maruti et al. in (2015) [19] the main goal of this technique is to delete reiterate 

data from the cloud. It can also aid in the reduction of bandwidth and storage space 

usage. Each user has their own unique token and has been allocated various 

privileges based on the duplication check. The hybrid cloud architecture is used to 

achieve cloud de-duplication. The proposed technique is more secure and uses fewer 

cloud resources. It was also demonstrated that, when compared to the standard De-

duplication technique, the proposed system had a low overhead in duplicate removal. 

On this work, both content level and file level de-duplication of file data is examined 

in the cloud. 

X. Xu and Q. Tu, in (2015) [20] de-duplication scheme architecture for cloud storage 

environments (CSE). DelayDedupe, a delayed target de-duplication strategy rely on 

chunk-level de-duplication and chunk access frequency, is suggested to decrease 

response time in storage nodes (S nodes). When used in conjunction with replica 

arrangement, this technique evaluates whether fresh multiplied chunks for data 

update are hot and, if they aren't, eliminates the hot duplicated chucks. The findings 

of the experiment show that the DelayDedupe method may successfully minimize 

response time while also balancing the storage demand on Nodes. 
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Y. Zhang in (2015) [21] Suggested a novel CDC algorithm indicated the 

Asymmetric Extremum (AE) algorithm. The major idea behind AE is relies the 

observance that in dealing with the boundaries-shift issue, the maximum value in an 

asymmetric local domain is improbable to be exchanged through a novel extreme 

value, which motivates AEs utilize of asymmetric (instead of symmetric, as in 

MAXP) local domain to distinguish cut-points and attain high chunking throughput 

while minimizing chunk size variance. According to the result, AE addresses the 

issues of low chunking throughput in MAXP and Rabin, as well as excessive chunk-

size volatility in Rabin, at the same time. AE enhances the throughput speed of state-

of-the-art CDC algorithms by 3x while achieving equivalent or greater de-

duplication efficacy, according to experimental results that rely on four real-world 

datasets. 

W. leesakul et al. in (2014) [22] suggested dynamic data de-duplication (DD) 

strategy for cloud storage, in order to strike a balance among changing storage 

efficacy and criteria for fault tolerance, as well as to increase cloud storage 

performance. adjust the number of copies of files in real time to match the changing 

degree of QoS. The results of the experiments reveal that suggested scheme works 

effectively and can deal with scalability issues. 

Krishnaprasad and B. A. Narayamparambil in (2013) [23] suggested a novel Dual 

Side Fixed Size Chunking (DSFSC) algorithm to achieve a rising de-duplication 

ratio for comparison to conventional FSC. This approach can successfully be utilized 

for audio or video files to produce a best De-duplication ratio without requiring 

computationally exorbitant variable size chunking or content determined chunking. 

Storage management and energy expenses will be reduced if storage requests are 

reduced. 

In recent years, the proliferation of multimedia data in various applications has 

brought forth challenges related to security, data analytics, sharing, and 

optimization. This literature review synthesizes findings from four key studies in the 

field, focusing on secure multimedia data processing, data analytics, security 

models, and optimization techniques in diverse contexts. 



CHAPTER ONE                                                                                            INTRODUCTION 

10 

Srinivasan et al. (2022) propose a Secure Multimedia Data Processing Scheme for 

medical applications. They address the crucial need for security in handling sensitive 

medical data by introducing a scheme that ensures secure processing of multimedia 

data. By employing encryption techniques and access controls, the proposed scheme 

aims to safeguard patient privacy and prevent unauthorized access to medical 

records. This study underscores the importance of security measures in medical 

applications to maintain data integrity and confidentiality. 

Kumari and Tanwar (2022) present a Secure Data Analytics Scheme tailored for 

multimedia communication within a decentralized smart grid infrastructure. 

Focusing on the energy sector, their scheme addresses the challenges of securing 

data analytics processes in decentralized environments. By integrating encryption, 

authentication, and anomaly detection mechanisms, the proposed scheme enhances 

the security of multimedia data transmission and analysis in smart grid networks. 

This study highlights the significance of secure data analytics in ensuring the 

reliability and integrity of critical infrastructure systems. 

Dhar et al. (2023) introduce an Advanced Security Model for Multimedia Data 

Sharing in the Internet of Things (IoT) environment. Recognizing the vulnerability 

of IoT devices to security threats, their model offers a comprehensive approach to 

securing multimedia data sharing in IoT ecosystems. Through the integration of 

access control, authentication, and encryption techniques, the proposed model aims 

to mitigate risks associated with unauthorized access and data breaches. This study 

emphasizes the need for robust security models to address the unique challenges 

posed by multimedia data sharing in IoT environments. 

Sharma et al. (2023) focus on optimizing multimedia data using computationally 

intelligent algorithms. Their study explores the application of artificial intelligence 

techniques to enhance the efficiency and performance of multimedia systems. By 

leveraging intelligent algorithms such as machine learning and optimization 

algorithms, the proposed approach aims to optimize multimedia data processing, 

storage, and retrieval. This research underscores the potential of computational 

intelligence in addressing the complexities of multimedia data management and 

improving system performance. 
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Overall, the reviewed studies underscore the critical importance of security, data 

analytics, and optimization techniques in handling multimedia data across various 

domains. These studies offer valuable insights and methodologies for addressing the 

challenges associated with secure processing, sharing, and optimization of 

multimedia data, thereby contributing to advancements in the field of multimedia 

tools and applications. 

S. Luo and M. Hou in (2013) [24] suggest a new chunk coalescing algorithm (CCA), 

this refers to the minimal and maximum amount of sub chunks which should be 

coalesced to form super chunks (SC). Experiments demonstrate that algorithm 

eliminates the expenses of the chunk coalescing (CC) procedure and speeds up the 

entire data de-duplication procedure. 

Table 1.1: Comparison of studies over Data De-duplication & chunking 

algorithm 

S. 

No. 

Authors Algorithm/method/ 

Techniques 

 Advantages Drawback 

1 N. Kumar and 

S. Jain 2019 

Differential 

Evolution (DE), 

Two Thresholds 

Two Divisors 

(TTTD-P) 

algorithm,  

 Hash values 

(chunks about 16 

times greater 

than Rabin CDC, 

5 times greater 

than AE CDC, 

and 

1.6 times greater 

than 

FAST CDC 

Take too much 

time to 

calculate the 

hash value. 

 

2 W. Leesakul 

et al. 2014 

Dynamic Data De-

duplication 

 experiments 

reveal that our 

proposed system 

works effectively 

Cannot work 

with the 

encryption 

keys 
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3 Y. Fan et al. 

2019 

De-duplication 

system that includes 

the processes of 

duplicate checking 

 implement the 

security analysis 

and also 

performance 

evaluation is 

effective and 

feasible in 

practice 

Take too much 

processing 

power of the 

system and 

consume more 

power 

4 M. Oh et al. 

2018 

A novel  

de-duplication 

technique  

 experimental 

findings illustrate 

that our solution 

could save 

greater than 90% 

of total storage 

space 

It will occupy 

more than 

20% more 

storage than 

other 

algorithms 

5 P. Anitha et 

al. 2021 

secure rising 

scalable data de-

duplication 

architecture 

 The system is 

virtually as 

successful as the 

existing ones 

(minor increase 

in computational 

overhead) 

Risk factors 

high 

6 R. Kiruba 

karan et al 

2015 

a cloud-rely 

technique for de-

duplication of huge 

data 

 The model is 

more efficient 

and accurate 

compared to that 

of the existent 

de-duplication 

techniques. 

The model is 

efficient but it 

is too costly.  

7 M. V. Maruti 

et al. 2015 

novel duplication 

check technique that 

configuration the 

token for the private 

file  

 the system 

achieve is 98 % 

Consume 

more power 

for execution 
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8 K. 

Vijayalakshmi 

and V. 

Jayalakshmi 

2021 

data duplication 

(DD) in clouds 

 the system 

achieves efficient 

knowledge and a 

good idea 

concerning de-

duplication 

techniques 

Can not 

manage TB of 

data in the 

cloud 

environment 

9 X. Xu et al 

2016 

two- side data de-

duplication (DD) 

technique, Chord 

algorithm 

 two-side data de-

duplication (DD) 

technique 

outperforms the 

traditional data 

de-duplication 

technique in 

terms of de-

duplication rate 

Can not 

manage more 

than 50 VMs 

10 X. Xu and Q. 

Tu 2015 

de-duplication 

scheme architecture 

for cloud storage 

environments (CSE) 

 Delay Dedupe 

method may 

successfully 

minimize 

response time 

while also 

balancing the 

storage demand 

on Snodes 

algorithms 

often lack 

comprehensive 

validation and 

may not be 

well-

understood by 

the research or 

practitioner 

communities 

11 M. Ellappan 

and 

S. Abirami 

2021 

Dynamic Prime 

Chunking (DPC), 

Existing algorithms,  

 DPC's durable 

performance 

over the another 

existent 

algorithms in 

terms of BSPS 

and the efficacy 

of the backup 

Storage and 

cost high 
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storage scheme 

12 H. A. Jasim 

and 

A. A. Fahad 

2018 

a novel fingerprint 

function (FF),  

 good de-

duplication ratio 

and rapid 

execution time, 

efficacy of the 

suggest 

algorithm was 

evaluated 

utilizing two 

relatively 

datasets 

Efficiency 

increases but 

attack rate is 

high 

13 W. Xia et al., 

2016 

FastCDC, a Fast 

and effective CDC 

approach 

 FastCDC is 

around 10 times 

quicker than the 

best open-source 

Rabin- based on 

CDC, and about 

3 times greater 

than the state-of-

the-art Gear- and 

Algorithms in 

terms of 

Chunk and the 

efficacy of the 

backup storage 

is less 

14 Z. Xu and W. 

Zhang 2021 

Content Defined 

Chunking (CDC) 

 Show that 

QuickCDC's 

chunking speed 

is 11.4x that of 

RapidCDC, and 

the associated 

de-duplication 

ratio is 

somewhat 

drawback of 

the Content-

Defined 

Chunking 

(CDC) 

algorithm is its 

potential 

sensitivity to 

changes in data 
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increased, with a 

maximum de-

duplication ratio 

improvement of 

222.3% 

 

patterns. 

15 S. Luo and M. 

Hou 2013 

a new chunk 

coalescing. 

algorithm (CCA) 

 demonstrate that 

our algorithm 

eliminates the 

expenses of the 

chunk coalescing 

procedure and 

enhance the 

efficacy of hash- 

comparison 

CCA may not 

perform 

optimally 

across all 

types of data 

or workloads. 

It is primarily 

designed to 

reduce 

redundancy in 

similar 

chunks, so it 

may not be as 

effective for 

datasets. 

16 H. Wu et al. 

2018 

a sampling-based on 

chunking algorithm 

and improve 

SmartChunker 

 illustrate that a 

sampling-based 

chunking 

algorithm and 

enhance 

SmartChunker 

application-

specified chunk 

configurations 

The 

algorithm's 

efficiency can 

be 

compromised 

if the chosen 

sampling 

strategy 

introduces 

bias, leading 

to suboptimal 

chunk 

boundaries 
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1.4 Research problem   

The rapid proliferation of the Internet of Things (IoT) has revolutionized the way 

data is generated, transmitted, and utilized, fostering unprecedented opportunities 

for innovation and efficiency across various domains. However, the seamless 

integration of IoT devices with cloud computing platforms has brought forth a 

myriad of challenges, particularly concerning the storage and management of vast 

volumes of IoT-generated data. In this context, the pressing research problem lies in 

the development of a robust and secure data storage mechanism tailored explicitly 

for cloud based IoT applications. The current landscape of data storage in such 

environments is fraught with obstacles, ranging from data security and privacy 

concerns to the optimization of storage and retrieval processes. 

First and foremost, the paramount concern revolves around ensuring the security and 

privacy of IoT-generated data stored within the cloud. Given the sensitive nature of 

much of this data, including personal and proprietary information, stringent 

measures must be implemented to safeguard against unauthorized access, data 

breaches, and malicious attacks. Furthermore, compliance with regulatory 

frameworks, such as GDPR and HIPAA, adds an additional layer of complexity to 

data security requirements. Moreover, the scalability and accessibility of data 

storage solutions in cloud based IoT environments pose significant challenges. As 

the volume of data continues to escalate exponentially with the proliferation of IoT 

devices, traditional storage architectures struggle to keep pace with the demands for 

scalability and efficiency. Hence, there is a critical need for innovative approaches 

that can seamlessly scale storage resources in response to fluctuating workloads 

and reduced 

effectiveness 
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while ensuring high availability and reliability. Furthermore, optimizing storage and 

retrieval processes to enhance overall system performance and efficiency is 

imperative. With the diverse nature of IoT-generated data, ranging from real-time 

sensor readings to multimedia content, the design of storage mechanisms must be 

tailored to accommodate varying data types and access patterns efficiently. This 

entails the exploration of novel data storage architectures, data indexing techniques, 

and data retrieval algorithms optimized for cloud-based IoT environments. 

Addressing these multifaceted challenges requires a holistic approach that 

encompasses technological innovation, robust security measures, regulatory 

compliance, and efficient resource management. By developing an effective and 

highly secure data storage mechanism specifically tailored for cloud based IoT 

applications, we can unlock the full potential of IoT technologies while mitigating 

the associated risks and ensuring the integrity and confidentiality of sensitive data. 

This research endeavour holds immense significance in shaping the future trajectory 

of IoT and cloud computing ecosystems, paving the way for a more connected, 

secure, and resilient digital 

1.5 Research Objectives 

The aim of this research is to design a new efficient mechanism for cloud storage 

and Internet of things environments. The proposed mechanism is designed to gain 

attention in large-scale storage systems based on text, image, and video. Hence, in 

order to achieve the research aim, the following objectives are formulated: 

1) To design a new mechanism to improve the performance of a large storage 

system by applying the de-duplication technique. 

2) To evaluate the performance of the proposed mechanism in comparison with 

available solutions in a simulated environment. 

3) To verify and validate the proposed mechanism based on the results obtained 

from the simulation experiments that ensure the correctness of its 

implementation. 
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1.6 Contribution of the Research  

The networked machines can connect with one another thanks to middleware, which 

is another piece of software employed by the central server. 

1) Mechanism Design: The research proposes a mechanism for cloud storage in IoT 

environments, focusing on enhancing performance through the implementation of 

deduplication techniques. This approach aims to optimize resource utilization and 

reduce storage costs, addressing a key challenge in large-scale storage systems. 

2) Performance Evaluation: The research conducts comprehensive performance 

evaluations of the proposed mechanism compared to existing solutions in simulated 

environments. By rigorously assessing its efficiency, scalability, and reliability, the 

study provides valuable insights into the effectiveness of the proposed approach in 

real-world applications. 

3) Validation and Verification: Through rigorous validation and verification processes 

based on simulation experiments, the research ensures the correctness and 

effectiveness of the proposed mechanism. By verifying its functionality and 

performance against established benchmarks, the study establishes the reliability 

and viability of the proposed solution for practical deployment in cloud-based IoT 

environments. 

1.7 significance of the research    

The successful resolution of the problem regarding an effective secured data storage 

mechanism for cloud based IoT promises to bring about a multitude of significant 

by enhancing security and privacy measures within the proposed mechanism, the 

research directly addresses Objective. Achieving heightened security ensures the 

protection of IoT-generated data stored in the cloud, aligning with the objective to 

design a mechanism to improve large storage system performance through 

deduplication techniques. As the proposed mechanism ensures secure and efficient 

data storage, it directly contributes to instilling greater confidence in the utilization 

of IoT technologies, supporting Objective. Organizations and individuals will trust 

IoT applications more knowing their data is securely stored, thereby validating the 

mechanism's performance in comparison with existing solutions. The enhanced 

accessibility and reliability of IoT data resulting from the proposed mechanism 
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directly support Objective through verification and validation processes, the research 

confirms the correctness and effectiveness of the mechanism, ensuring its reliability 

in storing and retrieving data seamlessly. Efficient resource utilization, including 

cost and energy savings, is a direct outcome of the proposed mechanism, in line with 

Objective by optimizing storage efficiency through deduplication techniques, the 

mechanism minimizes resource wastage, contributing to the performance 

improvement of large-scale storage systems. The proposed mechanism's ability to 

seamlessly scale to accommodate increasing volumes of IoT data aligns with 

Objective through simulation experiments and performance evaluations, the 

research verifies the mechanism's scalability, ensuring its suitability for evolving IoT 

deployments without storage limitations. 

1.8 Outlines of Thesis 

The following chapters are presented in this thesis: Chapter One presents the basic 

introduction, problem statement, methodology objective of the study and some other 

aspects. Chapter Two presents the theoretical background. It theoretically explains 

the method and techniques used in this study.  The proposed methods or 

methodology used in this study will be depicted in Chapter Three. The collected 

methods, techniques, algorithms collected in the proposed methodology will be 

analyzed in this chapter. The primary outcomes of the proposed system employing 

various strategies are shown in Chapter Four. The findings are given separately for 

each model. Chapter Five summarises the results reached throughout this thesis, 

overall conclusion derives from the study and briefly lists potential future works .
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CHAPTER – 2 

THEORETICAL BACKGROUND  

2.1 Performance Metrics and its Types: 

In today's interconnected world, the utilization of cloud storage in IoT environments 

has become paramount for efficient data management. However, the success of 

cloud storage implementation depends not only on its benefits but also on its 

performance. Performance metrics play a crucial role in evaluating the effectiveness 

and efficiency of cloud storage solutions for IoT applications. This paper explores 

various types of performance metrics essential for assessing cloud storage 

performance in IoT environments. 

1. Throughput: Throughput measures the rate at which data can be transferred to and 

from the cloud storage system. In IoT environments, where data is continuously 

generated and transmitted by numerous sensors and devices, high throughput is 

critical for timely data processing and analysis. Throughput metrics assess the 

system's ability to handle data influx efficiently, ensuring smooth operations and 

real-time insights.  

2. Latency: Latency refers to the delay between data transmission and reception, 

affecting the responsiveness of IoT applications. Low latency is essential for 

applications requiring immediate data processing, such as real-time monitoring and 

control systems. Latency metrics evaluate the speed of data retrieval and processing 

within the cloud storage infrastructure, ensuring minimal delay and optimal 

performance for IoT devices. 

3. Availability: Availability measures the accessibility of data stored in the cloud 

storage system. In IoT environments, where data accessibility is vital for decision-

making and operation, high availability is crucial to ensure uninterrupted access to 

critical information. Availability metrics assess the reliability of the cloud storage 

infrastructure, including backup and redundancy mechanisms, to maintain 

continuous data availability and prevent downtime. 

4. Scalability: Scalability evaluates the ability of the cloud storage system to 

accommodate growing data volumes and user demands. In dynamic IoT 

environments, where data volumes can fluctuate rapidly, scalable storage solutions 
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are essential to accommodate evolving needs. Scalability metrics assess the system's 

capacity to scale resources seamlessly, ensuring consistent performance and 

resource utilization as data requirements evolve over time. 

5. Reliability: Reliability measures the consistency and predictability of cloud storage 

performance over time. In IoT environments, where data integrity is crucial for 

accurate analysis and decision-making, reliable storage solutions are essential to 

maintain data consistency and integrity. Reliability metrics assess factors such as 

system stability, data durability, and error handling capabilities to ensure consistent 

performance and data integrity in diverse operational conditions. 

2.2 Data Deduplication  

Data duplication in Cloud IoT environments represents a critical challenge and 

opportunity in the modern digital landscape. As IoT devices become more prevalent 

and diverse, generating vast volumes of data, efficient data management is 

paramount. Data duplication, in this context, refers to the occurrence of redundant 

data across multiple IoT devices and cloud storage systems. Addressing this issue is 

pivotal to optimizing storage resources, enhancing data processing speed, and 

ensuring cost-effective operations in cloud based IoT setups. Cloud IoT 

environments leverage sophisticated algorithms and techniques to identify and 

eliminate duplicated data efficiently. By employing deduplication methods, such as 

hash-based comparisons and metadata indexing, redundant data can be 

systematically identified and stored only once, saving precious storage space and 

network bandwidth [25]. 

Furthermore, in the context of Cloud IoT, data deduplication plays a crucial role in 

ensuring data integrity, security, and real-time processing efficiency. Reducing data 

duplication not only conserves storage resources but also enhances data analytics 

and decision-making processes. In scenarios where real-time responses are essential, 

eliminating duplicate data ensures that the analytics systems receive accurate and 

up-to-date information, leading to more informed decisions. Additionally, 

deduplication mitigates the risks associated with storing multiple copies of sensitive 

IoT data, promoting data security and privacy compliance [26]. By implementing 

robust data deduplication techniques within Cloud IoT environments, businesses can 
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unlock the full potential of their IoT ecosystems, fostering innovation and enabling 

seamless integration of IoT technologies into various applications and industries. 

 

 

(a) Fig: 2.1 Data Duplication [78] 

The data duplication figure illustrates the process of data deduplication, which 

involves identifying and eliminating duplicate copies of data. It includes steps 

such as chunking data into smaller pieces, identifying unique data chunks, and 

replacing redundant chunks with references to the unique ones. The figure also 

depict how data deduplication improves storage efficiency and network transfer 

by reducing the amount of redundant data stored and transmitted. 
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(b) Fig: 2.1 Data Duplication [79] 

The data duplication figure illustrates various techniques and processes involved in 

data deduplication for storage of big data in the cloud. It depicts methods such as 

chunking, hashing, indexing, and duplicate detection algorithms. The figure also 

highlights how these techniques contribute to reducing storage overhead and 

improving storage efficiency in cloud environments. 

 

Figure 2.1: (a,b&c): Data De-duplication [28] 
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Figure 2.1 in the research portrays the intricacies of data deduplication. It 

encapsulates the process through three key elements: (a) Data Input, signifying the 

initial data influx into the system; (b) Deduplication Process, showcasing various 

stages such as chunking, hashing, and duplicate identification; and (c) Deduplicated 

Data Output, illustrating the storage of unique data along with potential metadata or 

pointers. This visualization serves to elucidate the methodology employed in 

minimizing data redundancy and enhancing storage efficiency within the 

deduplication framework. 

A deduplication flowchart typically represents the process of identifying and 

eliminating duplicate data within a system. The flowchart begins with the input of 

data, which then undergoes a comparison process. During this step, the data is 

analysed to identify duplicate elements. If duplicates are found, a decision point is 

reached, leading to the removal of redundant data. After deduplication, the flowchart 

might involve storing the cleaned data in a database or another storage system. This 

process ensures that only unique and non-redundant data is retained, optimizing 

storage space, improving data accuracy, and enhancing overall system efficiency. 

By visually representing these steps, a deduplication flowchart provides a clear and 

structured outline of the data cleaning process, aiding in understanding and 

implementation for various applications, such as databases, cloud storage [27]. 

Data de-duplication, sometimes known as Dedup for short, is functions that can 

assist minimize the cost of duplicate data storage. When Data De-duplication is 

enabled, it optimizes free space on a volume by evaluating the data on the volume 

and looking for duplicated portions. Duplicated portions of the volume's dataset are 

stored just once and (optionally) compressed to save space. Data de-duplication 

reduces redundancy while maintaining data authenticity and integrity. 

Data de-duplication is a procedure that eliminates redundant data copies and 

dramatically reduces storage capacity requirements. De-duplication can be 

performed as an inline procedure as data is written into the storage system and/or as 

a background operation to remove duplicates after data is stored to disk. 

The performances for de-duplication operations are small since it runs in a separate 

efficiency domain from the client read/write domain. It runs in the background, 
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regardless of which application is running or how the data is accessed (NAS or 

SAN). De-duplication savings are preserved as data travels - when it is copied to a 

disaster recovery site, backed up to a vault, or moved between on-premises, hybrid 

cloud, and/or public cloud. 

Chunking is the process of dividing a data stream into several pieces. When the 

chunk size is high, the cost of computation is reduced, but the result of deduplication 

may not be immediately apparent. When the chunk size is on the tiny side, the cost 

of computation is high, and the impact of deduplication is noticeable.  

2.2.1 Methods of Data Deduplication  

The data gathered through various sources and the emergence of the IoT has 

significantly increased the volume of data from petabytes to yottabytes, therefore 

necessitating the cloud computing paradigm in order to process and store data. The 

duplicated sections of the dataset are stored once along with being subjected to 

optional compression to free up even more space. It is also beneficial in ensuring 

veracity along with maintaining data integrity. [43] There are various methods of 

data deduplication such as inline deduplication, post processing duplication, source 

deduplication, target deduplication and client-side deduplication. 

There are two approaches that may be used to remove unnecessary deduplicate from 

material. [44] 

1) Deduplication In-Line. 

Due to the fact that it is processed inside a reinforcement framework, inline 

deduplication simplifies the information. When information is maintained in contact 

with reinforcement accumulating, it is possible to eliminate instances of duplication. 

Although inline deduplication needs less stockpiling of reinforcements, it might still 

result in bottlenecks. The capacity exhibit provider recommends that their inline data 

deduplication solutions have their output twisted off in order to achieve high 

throughput.  

Inline deduplication is a widely prevalent method that comprises deduplication and 

compression where data reduction takes place before the incoming data is written to 



CHAPTER TWO                                                                  THEORETICAL BACKGROUND 

27 

the stored media.  Inline deduplication is essentially the removal of redundancies 

from a given data along with being a software defined storage solution or a storage 

controller that is in control of the places and the processes through which the data is 

saved and secured. The Inline deduplication method takes account of the entirety of 

data going through the tool and is scanned, deduplicated and compressed in real-

time. Additionally, inline processing is also found to reduce the raw disk capacity 

that is needed in the system.  

It takes place because the  un-deduplicated and uncompressed dataset in its original 

size is never written to the disk. Therefore, the write operations that are executed are 

also comparatively lower thereby reducing the wear on the disks. However, it can 

also be observed that in inline deduplication the process significantly slows down 

the data backups that eventually is found to impede the entire process. This 

eventually reflects the fact that the result will thereby be devoid of any redundant or 

inefficient data. Inline deduplication is found to rely on the processes that exist 

between the data origin servers and the data backup destinations.  

2) De-duplication After Processing 

Simultaneously, post-processing data duplication is the process  where the data at 

first is written to the storage media which is then followed by the analysis of 

duplication along with identification of any scopes for compression opportunities. 

The deduplication and compression is executed only after the data is securely stored 

in the storage device. In addition to this, in the process of post-processing data 

duplication the initial capacity that is required is somewhat related to the raw data 

size. Simultaneously, the optimised data is then saved back to storage media. It is 

done with relatively lesser space requirements in comparison to that of before data 

reduction.  

Post-processing dedupe is a 735 synchronous reinforcement operation that 

eliminates repeated data after it has been maintained in contact with capacity. The 

data that has been entered more than once is removed, and it is replaced with an 

indication that is positioned toward the principal focus of the square. The post-

processing method provides customers with the flexibility to dedupe certain 

remaining jobs at hand and the speed to quickly recoup the most recent 
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reinforcement without requiring water. The trade-off for this is a larger 

reinforcement stockpile limit than would be required with inline deduplication [45]. 

Post-processing data duplication is identified as an asynchronous backup process 

that is beneficial in the removal of redundant data after it is successfully written to 

storage. This process provides the user with enough flexibility and independence 

towards deduping specific workloads along with efficient recovery of the most 

recent backup. The post-processing data duplication is found to utilise the latest 

backup and is therefore found to take up more disk space in comparison to other 

deduplication processes. However, the post-processing data duplication takes a 

relatively lengthier processing time because of the fact that data is identified prior to 

the removal of the duplicate data from the storage unit.  

3) source deduplication 

Source deduplication, also known as client-side deduplication, is a data 

deduplication technique that occurs at the source of data generation or transmission. 

In this approach, data deduplication processes are performed on the client or source 

device before the data is transferred over the network to the storage destination, such 

as a cloud server or backup appliance. 

This technique involves identifying duplicate data blocks or chunks within the data 

stream at the source device and eliminating redundant copies before transmitting the 

data to the storage system. By eliminating duplicate data at the source, source 

deduplication reduces the amount of data transferred over the network and stored on 

the destination storage system, leading to significant savings in bandwidth and 

storage capacity. 

4) target deduplication  

Target deduplication is a data deduplication technique that occurs at the storage 

destination or target device, such as a backup appliance or storage array. In contrast 

to source deduplication, which eliminates duplicate data at the source before 

transmission, target deduplication identifies and removes redundant data after it has 

been transferred and stored on the destination storage system. 
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In target deduplication, data deduplication processes are performed on the storage 

device itself, where duplicate data blocks are identified and eliminated based on 

predefined algorithms or patterns. This approach allows organizations to achieve 

data reduction and storage optimization benefits without requiring changes to the 

client or source devices. 

5) client-side deduplication 

Client-side deduplication, also known as source deduplication, is a data 

deduplication technique that occurs at the source or client device before data 

transmission or backup. In client-side deduplication, duplicate data blocks are 

identified and eliminated locally on the client device before transferring the unique 

data to the storage destination. 

2.2.2 Data Deduplication strategies   

Primarily, there is the record level, the square level, and the byte-level method, and 

each of them may be improved for increased storage capacity. 

▪ File-level data deduplication strategy: This strategy functions at the file level 

and not at the sub-file level or the block level. File-level data deduplication is 

a technique used for data optimization. This helps in eliminating redundancy 

at the file level. This is what helps this strategy significantly save storage 

space and improves the efficiency of data storage. This strategy first identifies 

the duplicate files and then retains only a single instance of each unique file. 

The duplicates are replaced as references and pointers to the original file. The 

duplicate files are identified across the whole storage system. The duplicate 

files are identified regardless of their location or format.  

This technique is particularly effective where the files are frequently 

duplicated. It is also effective in an environment where many similar files are 

stored. For example, it will be very effective to use a file-level data de-

duplication strategy in file servers or data repositories [46]. The major benefit 

of file-level data de-duplication is that it helps in reducing storage space. In 

addition to that, this technique also helps to reduce backup windows, 

improving backup and restore performance. This involves only unique files, 
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which makes the backup of files faster and reduces the recovery times of the 

files.  

These benefits help to reduce the corruption of files as the number of files gets 

reduced. This definitely enhances the entire data management system. The 

two steps used in this technique include 

1. The system scans the storage environment, which includes analysing 

the metadata and the duplicate content files. Metadata contains details 

like names, sizes, creation dates, and more attributes of the file [47]. 

The Metadata helps to differentiate between two or more different files. 

The analysis of the content involves an actual data examination within 

the files.  

2. The identification of the duplicate files is followed by keeping one 

single copy of the file as the reference file and the other duplicate files 

are saved as pointers or references to the primary file [48]. This gives 

easier access to duplicate files with the help of pointers and clearly 

saves storage space.   

▪ Block-level data deduplication technology: This technique is different from 

the file-level de-duplication technique as in this; the duplicate file is identified 

at the granular level. These are called “data blocks”. The data from different 

files are broken into blocks to identify duplicate data. The identified duplicate 

data is then replaced with pointers or references to the single instance of the 

block [49]. The three main benefits of this technique include saving storage 

space, reducing backup windows, and enhancing data transfer speeds. The 

data in this technique is stored in fixed or variable-sized blocks. The sizes of 

these blocks range between a few kilobytes to several megabytes.  

Each block identified in this technique is processed individually and the 

unique hash value for each block is calculated. This hash value represents the 

data within each block and hence serves as a fingerprint for accessing the data. 

The significant steps in this data deduplication technique are:  

1. The data from the files are broken into blocks after a thorough scanning 
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of the files.  

2. The hash values are assigned to each block, which helps in easy access 

to these data. This helps to find the duplicate data in these files.  

3. The hash value brings forward the duplicate data and these are then 

replaced with pointers or references to the single block file. This block 

is called the “reference file”. 

This technique helps in making the storage process efficient. Organisations can 

reduce storage space by eliminating the identified duplicate files. Organisations 

often use this method to store higher amounts of data in the same storage system. 

This technique also helps to have an efficient backup and restore system [50]. This 

happens because this technique only uses unique blocks and these are transferred 

and stored as it is. This makes the backup time lesser and creates shorter backup 

windows.     

⮚ Block-Level Innovation  

Modifications made on the inside of the file will result in the whole document having 

to be stored. PPT and other documents may need to undergo minor adjustments to 

their fundamental information. For instance, if a page has to be updated to display 

the most recent report or the dates, this may need a complete restore of the archive. 

The block level information de-duplication technology saves just one version of the 

paper and the subsequent portion of the differences that have been made between 

versions. The file-level innovation, which is often under a 5:1 compression ratio, 

whereas the block-level storage innovation may pack the information limit of 20: 1 

or even 50: 1 

⮚ Evacuate file level innovation 

File-level information de-duplication technology, the record is extremely little, and 

the rehashing of the information by the designated authority takes practically no time 

to calculate. Because of this, the method for expulsion has very little impact on the 

execution of reinforcement. Due to the fact that the file is little and has a low 

recurrence level, the report level handling load needed to evacuate the innovation is 

also comparatively modest. A less impact on the amount of time required for 
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recovery. Remove the technical need to "reassemble" the information square by 

using the square level essential file coordinating square and the information square 

pointer. The record level innovation consists of a one-of-a-kind archive storage and 

highlighting the document pointer, which significantly reduces the amount of time 

required to rebuild. 

⮚ Cloud Storage Mechanism 

Every cloud has a certain amount of storage, so if start uploading duplicate 

information, the storage will be lost, and dealing with data redundancy will become 

a major issue. Researchers have been investigating numerous techniques to combat 

this, and data deduplication is the best answer. A method called data deduplication 

was developed to improve storage [77]. Different cloud service providers, including 

Dropbox, Amazon S3 and Google Drive, now use this strategy. Data duplication is 

prevented by making sure it is never uploaded to the cloud more than once. 

A. As the amount of digital data grows, so does the need for greater storage space. 

B. Traditional solutions don't have any built-in protection against duplicate data being 

saved up.  

C. Data De-duplication is critical for removing redundant data and lowering storage 

costs. 

The quantity of data generated is growing exponentially in quickly developing 

digital age. The demand for more storage space has grown as more areas of life, from 

social media interactions to business transactions, are becoming digitalized. This 

article looks at how inadequate present storage capabilities are for keeping up with 

the rate of expansion in digital data and the significance of finding a solution. 

● Delete this line, comment solved. 

● A Partial Solution: The increased need for storage space has a partial solution 

in the form of cloud storage. Cloud service providers can offer scalable storage 

options to consumers and businesses by utilising the enormous capabilities of data 

centres. This method, however, has its own set of drawbacks, such as worries about 

data privacy, security lapses, and dependence on outside sources [9]. Additionally, 
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the cost of storing significant amounts of data on the cloud can rise significantly, 

particularly for long-term retention. 

● Explosive Growth of Digital Data: The internet's rising use, the widespread 

use of smartphones, and the rise of connected gadgets have all contributed to the 

digital revolution's data explosion. The amount of digital data is always growing 

because of all online interactions, transactions, sensor readings, and media uploads.  

● New Technologies for Data-Intensive Systems: The problem with storage is 

made worse by the emergence of data-intensive technologies like artificial 

intelligence (AI), machine learning (ML), and big data analytics. Massive datasets 

are needed for these applications in order to build models and gain insightful 

knowledge.  Additionally, the growing use of virtual reality, augmented reality, and 

high-definition multimedia content puts extra pressure on storage infrastructure by 

necessitating higher capacity and quicker data retrieval. 

The lack of storage capacity is becoming an urgent issue as the digital world 

develops. Finding scalable and effective storage solutions is urgent given the 

exponential growth of digital data and the rising demand for data-intensive 

applications. While cloud storage provides a partial solution, research into next-

generation storage systems is necessary to make sure that the storage infrastructure 

can sustain the ever-growing digital world [11]. It can fulfil the increasing need for 

storage space and unleash every advantage of the digital age by making investments 

in technology development and promoting innovation.  

The problem of redundant information has grown significantly in importance in the 

era of expanding digital data. Traditional storage solutions frequently do not have 

built-in duplicate data management tools. The significance of data deduplication in 

eliminating redundant data and lowering storage costs is highlighted in this article. 

Duplicate data refers to information that is identical and spread across different 

locations in a storage system. It may be caused by a number of things, including user 

error, system backups, or data replication procedures [13]. Duplicate data not only 

takes up valuable storage space, but it also drives up prices, slows down data 

retrieval, and uses resources inefficiently. 
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Hard disc drives (HDDs) and solid-state drives (SSDs), two common types of 

traditional storage, lack built-in techniques for locating and removing duplicate data. 

Organisations can considerably reduce their storage needs by getting rid of duplicate 

data. However, ensuring that only one copy of each piece of information is stored, 

data deduplication increases data efficiency. Enhancing data integrity means 

reducing duplicate data [14]. Duplicate data can cause conflicts and inconsistencies, 

jeopardising the accuracy and dependability of data that is kept. Disaster recovery 

procedures might be hampered by duplicate data since it increases backup and 

restore times.  In today's data-driven world, adopting data de-duplication is essential 

for effectively managing and maximising the value of digital data. 

2.2.3 Process of Data 

A method known as "data deduplication" may be used to get rid of multiple copies 

of data that is repeated. You may also know it by the name Single Instance Storage. 

There are two distinct methods of deduplication, which are referred to respectively 

as deduplication at the file level and at the block level [50]. While deduplication at 

the file level takes into consideration the whole file, deduplication at the block level 

applies deduplication to data blocks using hashing methods. 
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Figure 2.2: Deduplication Flowchart [51] 

The figure 2.2 deduplication flowchart effectively displayed the process of data 

optimization through applying deduplication procedures. The procedure starts with 

the registration process from the end of users. Users provide various primary and 

well-organised information about themselves or their organisations in order to 

register themselves into the cloud storage system. The successful registration takes 

them to the login page of the cloud storage system. The users are required to provide 

their login id and password in order to access their data stored in the database. The 

login id and password is used to ensure the safety and privacy of all the stored data. 

However, if the registration process of the user fails then the user is asked to re 

authenticate their credentials and basic information. The successful login using the 

correct credentials take the users to the upload and download section. Downloads of 

the stored files require authentication from the system. Users can download the 

asked files if they are authenticated to do so. However, if the user wants to upload a 

file in the cloud storage then the duplication of the file will be checked. The access 

is denied if any kind of duplication is found on the provided file. Cloud storage 

systems grant the permission to upload any new file if no duplication is found on the 

provided file. 
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2.3 Purpose of Data Deduplication  

It is crucial to eliminate duplicate data within a dataset for efficient management of 

data and save storage space. Therefore, it can be said that data De-duplication helps 

enhance the integrity of the data while improving the system's performance as well. 

In order to get an in-depth picture of the significance of data De-duplication, here 

are some key points explained in details: 

1) Optimization of System Storage: 

After reviewing other studies on this subject, it has been understood that not only 

duplicate data takes up unnecessary storage space, but also hampers the overall 

system performance. Data De-duplication identifies duplicate data and files in 

the device, and removes them to make space for other important data. Examples 

of data De-duplication in real world scenarios can be found in backup systems, 

archives, and cloud storage. These services use data De-duplication to prevent 

data redundancy while improving the data retention capabilities of itself. 

2) Bandwidth Conservation: 

Bandwidth conservation becomes a key factor when data is to be transferred 

across domestic networks. It also becomes crucial while data backup to different 

locations (offsite). The Data Deduplication comes in use in this case selectively 

remove repetitive data prior to the transfer. This is done so that the data that is to 

be transferred is reduced in size, and only takes up space that is crucial for the 

core dataset. However, this also helps in faster transfer of the data, lower 

bandwidth needed for the transfer of data, and lesser network traffic. 

3) Data Governance Regulations and compliance of them 

Government has placed several strict regulatory compliance measures on 

companies and industries regarding data handling. In such cases, data 

deduplication comes into play by helping companies meet most of these 

regulations. Additionally, it also helps in "data tracking" efficiently, and helps to 

follow the data governance practices as prescribed. 
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4) Data integrity and Data loss: 

Data De-duplication can improve the integrity of the data and confirm only one 

version of each data to exist in the data set It is important to avoid any sort of 

duplication of data as they can cause errors and inconsistencies. If in any 

circumstances, there is data loss, data de-duplication makes the data recovery 

process much simple. It also ensures that there are less risks of data corruption 

and faster process of system restore. 

The expenditures that are connected with duplicated data may be reduced by storage 

managers with the assistance of data de-duplication. When dealing with large 

datasets, it is common to find a significant amount of duplication, which drives up 

the cost of storage. As an example: 

● It's possible that different users' file sharing includes several copies of the 

same or similar files.  

● Virtualization guests may often be almost exactly the same from one VM to 

the next.  

● There may be some variation from one day to the next in the backup 

snapshots. 

The dataset or the workload on the volume will determine the amount of space that 

can be saved thanks to data de-duplication. High-duplication datasets have the 

potential to reach optimization rates of up to 95%, which would result in a 20-fold 

decrease in the amount of storage space required. The following table provides a 

summary of typical cost reductions that may be achieved by de-duplication of 

different categories of material: 

Table 2.1: Data De-duplication Scenario & Typical space savings 

Scenario Content Typical space 
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savings 

User documents Office documents, photos, music, 

videos, etc. 

30-50% 

Deployment 

shares 

Software binaries, cab files, 

symbols, etc. 

70-80% 

Virtualization 

libraries 

ISOs, virtual hard disk files, etc. 80-95% 

General file share All the above 50-60% 

2.4 Chunking Algorithm  

Chunking is referred to as the process of splitting file into smaller units where 

efficient chunking is one of the key elements that provides an estimation of the 

deduplication performance. Chunking is important in certain applications such as 

data compression, data synchronisation, as well as data duplication as it helps in 

determining the duplicate detection performance of the system. Subsequently, in the 

perspective of the cloud storage ecosystem and about data duplication chunking is 

of two types that are fixed size and variable size.  The chunking process is beneficial 

in breaking the data input stream into smaller pieces or chunks where the chunking 

method is the first stage of the deduplication system. A chunk is the largest physical 

disc unit dedicated to storing database server data.  

Chunks give managers a much larger unit to work with when allocating disc space. 

An individual chunk can be up to 4 TB in size. The maximum number of chunks 

allowed is 32,766. If you upgraded from a version prior to version 10.00, you must 

perform the on-mode BC2 command to enable the maximum chunk size and 

maximum number permissible otherwise, the maximum chunk size is 2 GB. 
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2.4.1 Storage areas made up of chunks 

Dbspaces, or database spaces, act as logical storage containers in database systems, 

consisting of chunks. Chunking divides the storage into manageable parts, 

optimizing storage utilization and enabling flexible data management. In case of 

corruption, only the affected chunk is impacted, minimizing the effect on other data. 

Blobspaces are designated for large binary objects like images and videos. Chunking 

breaks down these objects, enhancing data integrity and recovery. Managing large 

binary data becomes more efficient as chunking ensures easier storage and retrieval 

Segregated Buffer spaces store diverse data types within a single database, 

categorized based on different criteria. Chunking allocates fixed-sized units, 

facilitating easy access and parallel processing. It enables efficient storage utilization 

and enhances database performance. Temporary spaces handle temporary data, 

aiding query processing and sorting. Chunks store specific parts of temporary data, 

allowing seamless management and deletion when data is no longer needed. These 

specialized buffer spaces store only temporary data, like intermediate results. 

Chunking optimizes storage by predetermining chunk configurations. 

 

Figure 2.3: Chunking Algorithm [66] 

Data deduplication is an emerging technology that involves the introduction of 

reduction of storage use and is an important way of handling data replication in the 

cloud storage mechanism. It can be mentioned here that data deduplication involves 

three basic components that are chunking, hashing, and comparing hashes in order 

to detect redundancy.  A chunking algorithm is considered the first step in achieving 

efficient data duplication ratio and throughput, certain unique hash identifiers are 

implemented to draw a comparison between the chunks between the current to that 

of the previously stored ones.  
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2.5 Hash Value (HV)  

A hash value is identified as a numeric value of a definite length that uniquely 

defines data. The hash value generally represents a large range of data in the form 

of much smaller numerical values in order to make it eligible to be used with digital 

signatures. The utility of hash value is significantly higher than in comparison to the 

original larger value and is important in verifying the integrity of the data that has 

been transmitted through non secured channels. Generally, data is hashed at a 

definite time along with ensuring its value is protected at the same time.  

Different hash function values are allocated to various slices or chunks of data and 

after comparing a hash value (HV) with all other slices, the updated hash values are 

returned. This procedure is reiterated until the value convergence of assignment to a 

state of no change. A numeric number of a predetermined length that may be used 

to uniquely identify data is referred to as a hash value. Hash values are employed in 

digital signatures because they can represent enormous quantities of data with much 

smaller numeric values. This makes them useful [40]. 

Hashes are generally identified as the output of a hashing algorithm where the 

primary objective of these algorithms is to produce a unique, fixed-length string – 

the hash value, for a given piece of information or data. The hashing algorithm 

prevents the reconstruction of a file’s content and therefore, validates and evaluates 

the content of two different files along with maintaining privacy and without 

acquiring any information about the contents. Hash values are significant to security 

searches and are important in evaluating the queries related to a particular dataset 

over an existing network, it also helps in the early identification of threats.  

A hash value (HV) usually requisites a particular number of bits, and when 

subsequent chunks of data search for and locate chunks with the same hash value; 

the chunks are viewed as duplicate data and aren’t kept in the data de-duplication 

(DD) procedure. If the hash value (HV) is unique and not existing among previously 

recorded values, the hash value is saved, and the matching data chunk is examined 

and saved in databases (DB). 
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Figure 2.4: Hash value  

Cloud storage has evolved as one of the leading options to store huge amounts of 

data; however, the hash value is also the representation of a longer document from 

which it was computed. The contents of a file is processed through the 

implementation of a cryptographic algorithm where a unique numerical value is 

generated and identified as a hash value. Hash values are important as they can be 

used to assess data of various sizes into a limited fixed size value. Hash values are 

deterministic along with being efficient in adapting to any change in the input 

thereby incorporating it in the output.  
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2.6 Dynamic Prime Chunking  

The process flow of the chunking method, in addition to its primary and essential 

qualities. Dynamic Prime Chunking is a sophisticated data management technique 

designed to optimize storage efficiency and enhance data retrieval processes. Unlike 

traditional chunking methods, DPC dynamically adjusts the size of data chunks 

based on the content being processed. This adaptability ensures that chunks are of 

optimal size, preventing both underutilization and excessive fragmentation of 

storage space. By intelligently resizing chunks according to the data's nature, DPC 

improves storage utilization, accelerates data access, and minimizes storage wastage. 

2.6.1 Dynamic Prime Chunking Design  

The Dynamic Prime Chunking does not have a fixed size of sub problems, or chunks, 

and reduces computational cost. They are subjected to dynamic changes that depend 

on various heuristics. In simpler words, those algorithms can modify the size of the 

chunks depending on various factors, including the input number's properties and 

computational resources available onsite. 

 

Figure 2.5: Fixed size chunking of data packet 

Dynamic prime chunking algorithm aims to maintain a balance between memory 

usage of the data, and the "computational efficiency" [52]. Breaking the problematic 

bigger chunk into smaller chunks will dynamically reduce their size, making the 

processing much more efficient, and also reduce memory space. 
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Step 1: Data Input Stream 

Strat from I, I is the initial byte position of the data input string. 

Step 2: Calculate the dynamic window size dw based on prime number. 

Step 3: Finding the maximum byte position. 

M is threshold value if, Chunk breakpoint determine the following two condition  

1. The interval [I, N] is empty, or the value of M is greater than the values of all 

bytes in the interval. 

2. The value of M is not less than the values of all bytes in the interval [O, C] 

Step 4: Declaring chunk boundary. 

Return C as breakpoint I' is first byte of the remaining input string. 

The version of AE that uses the dynamic prime chunking technique has been made 

better. DPC is primarily applicable to two crucial qualities, namely position and 

value. As can be seen in Figure 2.5, the DPC design process consists of four distinct 

components. First, start by reading the data input stream coming from the source. 

Begin at point I, where I is the beginning byte location of the data input stream. Start 

from there. Following this, we go on to step 2 of the process, where we use steTp 3 

to compute the size of the dynamic window (DW) using prime integers. DPC makes 

use of two windows: one with a configurable size, and another with a dynamic 

changing size. The algorithm decides whether the lowest or maximum value of the 

input stream is the maximum value or the maximum value to use as the threshold 

(M). The procedure will decide what the threshold value is, and it will always be the 

highest or most extreme number. The third phase consists of determining the 

maximum value for a byte and locating the border of a chunk based on the two 

requirements that are listed below: 

(1) To ensure that the interval [I, N] is also empty, or that the highest threshold 

value of M is greater in significance than any of the byte values included 

inside [I, N].  
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(2) In the dynamic window with a changeable size, the extreme value M must be 

greater than the value of every byte that falls between the coordinates [O, C]. 

In order to ensure that the highest byte point is represented as the maximum local 

value, it is necessary to assess whether or not the first byte satisfies the requirements 

described above, which are related with a threshold value. On the other hand, the 

maximum byte location has been established, and DPC has declared the byte that is 

most to the right to be the chunk breakpoint for the right-side window [52]. The 

algorithm will return the breakpoint location C once the chunk boundaries have been 

specified in step four once they have been declared. After that, the sequence that 

begins at the first byte location continues with the letter I. Repeat the methods from 

the previous section until you locate the very last boundary of a chunk in the 

incoming data stream.  

2.6.2 Workflow of DPC 

 

Figure 2.6: The workflow of DPC algorithm 

In the example shown in Figure 2.6, the first byte position, which is indicated by the 

letter A1, continues to advance in the correct direction until it reaches the end of the 
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byte position B. The threshold value M1 is used to partition the whole data stream 

into several parts. The location of the leftmost byte, which comes before the 

threshold, must thus be a window of variable size. M1 refers to the gap that exists 

between each successive byte, beginning with A1 and ending with X1. As the right 

motion, the byte position is moved forward once again, this time from Y1 to B1. As 

stated in Chunk 1, DPC is also a dynamic window with an adjustable width and 

height. The precise procedure is carried out from chunk 1 all the way through chunk 

N. The reason why there is a dynamic window is because the point at which the 

chunks split is constantly changing in size. AE, on the other hand, just the left side 

has a varied size; the right section remains the same throughout. As a result, the 

effects will be felt greater in AE. In order to circumvent this problem, the DPC 

technique that we've presented makes use of a variable window size. This helps to 

get rid of the lengthy chunk sequence and boosts the deduplication throughput. 

2.7 Content Defined Chunking (CDC) Algorithms 

The term "content-defined chunking" (CDC) refers to a technique for dividing files 

into chunks of varying lengths, with the cut points being determined by the inherent 

characteristics of the files themselves. In contrast to chunks with a set length, chunks 

with a variable length are less susceptible to byte shifting.  

Due to its strong redundancy detection ability, Content-Defined Chunking, also 

known as CDC, has been playing a pivotal role in data deduplication systems for the 

better part of the last 15 years. Existing CDC-based techniques, on the other hand, 

result in a significant increase in the amount of CPU overhead. This is because the 

chunk cut points are determined by calculating and evaluating the rolling hashes of 

the data stream byte by byte.  

The technique of chunking divides a single file into many smaller files that are also 

called pieces. Chunking is significant in some applications because it impacts the 

performance of the system in terms of duplicate detection. Some examples of these 

applications are remote data compression, data synchronisation, and data 

deduplication. The term "content-defined chunking" (CDC) refers to a technique for 

dividing files into chunks of varying lengths, with the cut points being determined 

by the inherent characteristics of the files themselves. In contrast to chunks with a 
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set length, chunks with a variable length are less susceptible to byte shifting [53]. As 

a result, the likelihood of discovering duplicate chunks both inside a file and across 

files is raised as a result of this. However, in order to locate the cut spots, CDC 

techniques need extra calculation, which might be computationally costly for 

particular applications.  

A content-defined variable-length chunking method [52] is offered as a solution to 

the issue of byte shifting in fixed-length algorithms. This algorithm reads files as a 

data stream and creates chunks according to the Rabin fingerprint of a window data. 

It has been suggested that the Rabin method use two divisors instead of only one in 

order to overcome the problem that it is difficult to locate the cut-off point. Of the 

two divisors, one is simple to do and the other is the complete opposite. The most 

difficult divisor needs to be used right from the start when trying to locate an 

appropriate stopping point. If the data cannot be fulfilled within a lengthy data 

period, then it will be replaced by the easier one in order to prevent huge chunks of 

data wherever possible. In addition to this, the Rabin fingerprint suffers from an 

issue known as size variation of pieces. A technique known as LMC, or Local 

Maximum Chunking, has been suggested as a solution to this problem . The method 

comes to the conclusion that a cut-off point should be established if the greatest value 

of a window's data is located in the centre of the window. This allows the programme 

to avoid the time-consuming process of generating the Rabin fingerprint. At the 

same time, the size of the chunks may be restricted because the window size can be 

set, and the distribution of the chunk size is reasonably constant. This is because the 

window size can be set. AE [48] and RAM [35] are two techniques that have been 

presented in order to expedite the process of validating the window data. Increasing 

the speed of chunking may be accomplished by modifying the validation technique 

of window data; this process will be discussed in more detail later on. In addition, 

the concept of parallel computing is used to the algorithms that are used for data 

chunking in order to make the process move more quickly. 

2.8 Types of Chunking Algorithm  

2.8.1 Rabin chunking Algorithm 

Input: input file,file; default value,Value;length of sliding window, W; Output: cut 

point,I; 
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function RabinChunking(file,Value, W) 

i=1 

index=0 

while(byte=readByte(file)) 

array[index%W+1]=byte 

if array.length>=W then 

else 

if hashValue(array,index, W)==Value then 

return i 

end if 

continue 

end if 

i=i+1 

end while 

end function 

 

The Rabin chunking algorithm is also popularly known as "Rabin Fingerprinting 

Algorithm" which was developed back in 1981, by Michael O. Rabin. This system 

is very helpful when it comes down to breaking the data into smaller, and fixed size 

chunks. This breakdown of the data depends on their data content. Therefore, it is 

clearly suggested that it is a technique used in de-duplicating data. 

This algorithm apparently creates a "rolling hash function". This function then 

proceeds to calculate each of the data block's hash value, which is most popularly 

known as a fingerprint of the data as well [54]. This fingerprint plays a crucial role 

in identifying duplicate data chunks on the data, which are similar to one another. 

Therefore, it is understood that any small change made in the data itself can result in 

different hash values. 

Sliding window approach is used in this type of algorithm to perform chunking. An 

initial data window starts the process, and calculates that window's hash value at the 

same time After the calculation is done, the algorithm shifts the window position by 

one byte, only to calculate the hash value for the new position of the window. The 

goal of this is for the hash value to satisfy certain criteria. 

The Rabin Fingerprinting Algorithm is capable of identifying duplicate data chunks 

within a larger dataset in a more efficient way. [56] This comes in use in the case of 
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backing up specific chunks of data to save space in the storage device. The Rabin 

chunking algorithm can compare the hash values in order to recognise the duplicate 

data chunks even if data blocks are somewhat dissimilar. 

However, one of the biggest disadvantages of this algorithm is that it can give false 

results [55]. For instance, it might show the result as false positive, which can happen 

when coincidently, two completely different data blocks produce the same hash 

value, therefore they can be flagged as duplicate data. Similarly, false negative 

results occur when unfortunately, two of the same blocks of data show different hash 

values. 

2.8.2 LMC Chunking Algorithm 

Output: cut point,I; 

function LMCChunking(file, W) 

i=1 

start=1 

while(byte=readByte(file)) 

if byte<=max.value then 

if i==max.position+w and max.position>=start+w then 

end if 

start=max.position+1 

return max.position 

else 

max.value=byte 

max.position=i 

end if 

i=i+1 

end while 

end function 

 

The LMC, or Lesk's Measure of Cohesion Chunking Algorithm was Introduced in 

1986 by Michael Lesk. It is essentially a language processing technique, which can 

detect meaningful chunks from a text. This technique calculates the Cohesion scores 

of every word present in a text . This calculation is primarily done by examining the 

overlap of the context of one word to its immediate next word. These contexts are a 

group of words in a window, which has a fixed size around the main word.  
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The use of this algorithm is mainly found in extracting information or parts of speech 

tagging, etc. The identification of valuable chunks and extracting them from a text 

allows in-depth understanding of the chunk's content. Thus, the LCM Algorithm can 

assess the relationship shared between words by analysing their context, which 

results in accuracy in identifying chunks. 

2.8.3 Asymmetric Extremum (AE) Chunking algorithm 

Algorithm for AE chunking Input: input file, file; size of fixed window, W; Output: 

cut point,I; 

function AEChunking(file, W) 

i=1 

while(byte=readByte(file)) 

if byte<=max.value then 

if i==max.position+w then return i 

end if 

else 

max.value=byte 

max.position=i 

end if 

i=i+1 

end while 

end function 

 

This algorithm looks for phrases, which appear to be important. This decision is 

based on external factors such as the high level of information of the word, in 

comparison to its neighbours. AE chunking algorithm reduces traffic redundancy to 

be more efficient. After Tokenization, the features of each word, such as syntactic 

patterns and parts of speech tags are computed.  

The algorithm then proceeds to group words with best external features to form 

something meaningful. Therefore, the AE chunking algorithm group’s words that 

have the appearance of being informative to make a meaningful phrase, and this is 

in use while extracting keywords from a text or retrieving information. 

2.8.4 RAM Chunking Algorithm 

function RAMChunking(file, W) 

i=1 
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while(byte=readByte(file)) 

if byte>=max.value then 

if i>w then 

return i 

end if 

max.value=byte 

max.position=i 

end if 

i=i+1 

end while 

end function 

 

"RAM or Rapid Asymmetric Maximum Chunking Algorithm” is a helpful approach 

for the identification and segmentation of handwritten text in a phrase [56]. The 

RAM chunking algorithm was developed so that the accuracy of the segmenting of 

the handwritten characters increases [54]. In order to be able to achieve this goal, the 

RAM chunking algorithm uses a group of image processing systems, known as 

"threshold-based image processing" It helps to overcome challenges posed by the 

overlapping strokes of the character, their irregular sizes, etc. The use of 

asymmetrical chunking (smaller chunk) is Done by detecting the physical features 

such as strokes and slants.  

2.9 Secure Hash Algorithm 

Secure Hash Algorithm (SHA) are a kind of cryptographic function that is used to 

keep data secure. It transforms data using a hash function, which is a method 

composed of bitwise operations, modular additions, and compression functions. The 

hash function then returns a fixed-length string that has no resemblance to the 

original. These methods are meant to be one-way functions, which means that once 

they've been translated into their corresponding hash values, it's almost hard to 

reverse the process. SHA-1, SHA-2, and SHA-3 are three algorithms of interest, each 

of which was built with ever better encryption in response to hacker attempts. 

Because of publicly publicised weaknesses, SHA-0, for example, is now outdated. 

[56] 
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SHA is often used to encrypt passwords since the server just has to maintain track 

of a single user's hash value rather than the actual password. If an attacker steals the 

database, they will only obtain the hashed functions and not the real passwords, 

therefore if they enter the hashed value as a password, the hash function will turn it 

into another string and prohibit access. Furthermore, SHAs display the avalanche 

effect, in which changing a few characters in an encrypted string generates a large 

change in output; or, conversely, vastly dissimilar sequences give comparable hash 

values. As a result of this consequence, hash values do not provide any information 

about the input text, such as its original length. Furthermore, SHAs are used to 

identify data tampering by attackers; for example, if a text file is slightly altered and 

hardly apparent, the modified file's hash value will be different from the original 

file's hash value, and the tampering will be rather obvious. 

There are several advantages and disadvantages of using Secure Hash Algorithm-1. 

The primary advantage of using SHA-1 algorithm is it reduces the risks of brute 

force attack by the hackers. It is useful for storing the passwords, as it is a very slow 

process. It is also used to compare codes or files in order to identify the 

“unintentional only corruptions”. It also has the capability to replace the SHA-2 

when the matter of interoperability issue is noticed with the legacy codes. However, 

it also suffers from various drawbacks including it is less secure as compared to other 

algorithms. The collision is extremely easy to find in the SHA-1. The length of the 

key in the SHA-1 is too short to resist the potential attacks. It is not suitable for uses 

other than storing the passwords, as it is slow in nature. 
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Figure 2.8: Hash function 

2.9.1 SHA – 1 

It is a 160-bit or 20-byte long hash-based function-based encryption technique that 

is used to mimic the MD5 algorithm, which has been around for a while. The NSA, 

or National Security Agency, conceived and developed the specific algorithm, which 

was intended to be part of the crucial component- Digital Signature Algorithm 

(DSA). Weaknesses in cryptographic methods were discovered in SHA-1; the 

encryption standard was eventually discontinued and was hardly used.  

SHA-1 generates a 160-bit hash value or message digests from the inputted data 

(data that needs  

encryption), which is similar to the MD5 hash value. To encrypt and protect a data 

item, it performs 80 rounds of cryptographic procedures. SHA-1 is used in a number 

of protocols, including: 

● Transport Layer Security (TLS) 

● Secure Sockets Layer (SSL) 

● Pretty Good Privacy (PGP) 

● Secure Shell (SSH) 

● Secure/Multipurpose Internet Mail Extensions (S/MIME) 

● Internet Protocol Security (IPSec) 

SHA-1 is widely employed in cryptography applications and contexts where data 

integrity is critical. It is also used to index hash functions, as well as to detect data 

corruption and checksum issues. 

The SHA-1 or the “Secure Hash Algorithm 1” is considered the cryptographic 

algorithm that includes the input and produces a 160-bit hash value. This hash value 

is called the “message digest” which usually is rendered as a kind of hexa-decimal 
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number that is 40 digits longer. It is also considered to be in the “US Federal 

Information Processing Standard'' and was said to be designed by the “United States 

National Security Agency” [57]. The SHA-1 is presently considered to be insecure 

since the year 2005. The giant technical browsers which include Google, Microsoft, 

Mozilla and Apple have prevented accepting SHA-1 SSL certificates by the year 

2017. The requirements to calculate the graphical value is included in Java where 

the “MessageDigest class” is utilised under the package for “java.security”. 

This class offers various cryptographic hash functions, including MD2, MD5, 

SHA1, SHA224, SHA256, SHA384, and SHA512, which can be utilized to compute 

the hash value of a given text. These algorithms can be initialized using the static 

method "getInstance()". Once an algorithm is selected, the message's digest value is 

calculated, and the results are returned as a byte array. To convert this byte array 

into a readable format, the class utilizes "BigInteger". This conversion enables the 

representation of the signal, which is then further converted into hexadecimal format 

to obtain the expected result from the message digest. 

These algorithms could be used in several forms such as: 

1) Cryptography: The primary application of SHA-1 is to provide protection to the 

communication from being interrupted by parties from outside. It generates 

singular, irreversible and fixed size values. The data integrity can also be 

confirmed through the comparison of this hash value with the original hash value 

[57]. It also makes it easy in confirming that the data that is used is not tampered 

or changed with the manner during the transmission of the data.  

2) Digital Forensics: The hash value of a file that includes the digital evidence can 

be manufactured making use of the SHA-1 algorithm in the digital forensics. 

This also helps in ensuring that the evidence has not been changed during the 

process of investigation using the hash value as a type of proof [58]. It also 

proves that the file is not altered if the hash value for the original file and the file 

of evidence matches. 

2.9.2 SHA-512  

 There are multiple applications of hash functions in the digital environment. 

The mechanism applies to internet security, block chains and others. The hashing 
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algorithm constitutes a one-way program (). The primary advantage of such a type 

of algorithm is it cannot be restructured and decoded.  Therefore, if any third party 

gets access to the server, the entire data remains unreadable. The Hashing algorithm 

holds the following properties in brief.  

a. Mathematical - It maintains strict rules to design the algorithm.  

b. Uniform - All hashing programs are uniform in nature. Whatever be the length 

of the data it produces a fixed length of output.  

c. One way - Once it is created, it will be nearly impossible to decode it. 

Therefore, it is secure for programmers as well as users.  

d. Consistent - A hashing program only one process that is compressing the 

given data.  

 

SHA-512 works in the following manner -  

1) Input Formatting  It has an input size limitation. SHA - 512 can not execute an 

input of any size. The entire message constitutes three parts namely - original 

message, padding bits and the size of original message. The message will be 

executed as blocks of 1024 bits.  

2) Hash Buffer Initialization It is already mentioned that the process works with 

a block of 1024 bits and collects from the previous blocks. However, it 

generates a problem for the first 1024-bit block, therefore, it is unable to use 

the result from the previous block. This problem can be solved by providing a 

default value to the first block in order to start the process. The intermediate 

results will be used in the next block. Therefore, the result should be stored 

somewhere for later use. This will be done by the hash buffer.  

3) Message Formatting It takes one block of 1024 bits at a time and message 

formatting is done on it. The actual execution is done by using two things that 

is a block of 1024 bits and the result from the previous processing.  

4) Output After the message-processing phase we get a 512-bit hash value for 

the original message. From each block, intermediate results are used for 

processing the next block. When the execution of the final bit of 1024 is 

finished, we get the result of the SHA 512 algorithm.  
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SHA-512 is a function of the cryptographic algorithm SHA-2, an extension of the 

well-known SHA-1.  

SHA-512 is essentially similar to Sha-256, except that it uses 1024 bit "blocks" and 

accepts a maximum length string of 2128 bits as input. In addition, SHA-512 differs 

from Sha-256 in terms of algorithmic alterations.  

A cryptographic hash (also known as a 'digest') is a kind of ‘signature' for a text or 

data file. For a text, SHA-512 provides a nearly unique 512-bit (32-byte) signature. 

The source code is available below.  

This is a companion script to the SHA-256 script (which has more information). This 

is a reference implementation, as close to the NIST specification as possible, to aid 

in understanding the algorithm (section numbers relate the code back to sections in 

the standard); it is not at all optimized (in timing tests, using Chrome on a low-to-

middle Core i5 PC, this script will hash a short message in around 0.4 - 0.6 ms; 

longer messages will be hashed at a speed of around 0.5 - 1 MB/sec).  

Because SHA-512 is based on 64-bit unsigned integers, which JavaScript does not 

natively handle, it is more difficult to implement in JavaScript than SHA-256. For 

an optimised implementation, I've developed a long library for UInt64 operations; 

there would be more efficient ways of accomplishing this. 

 

 

 2.10 Dataset  

The research utilizes two primary datasets, each offering unique insights and data 

characteristics. These datasets are integral for conducting comprehensive 

evaluations and comparisons of various cloud storage solutions, providing a robust 

foundation for the benchmarking process.  



CHAPTER TWO                                                                  THEORETICAL BACKGROUND 

56 

2.10.1 Multimedia and OS Datasets  

Multiplicative-Divisive Probabilistic Congestion Control (MDPC) is a congestion 

control algorithm used in computer networks. It is designed to control the rate at 

which data is transmitted over a network to avoid congestion. 

To implement MDPC, the researcher will need the following: 

1. Operating System: MDPC is a congestion control algorithm that can be 

implemented on any modern operating system, such as Windows, Linux, or macOS. 

2. Network stack: The MDPC algorithm operates at the transport layer of the 

network stack. It requires access to the congestion control module of the network 

stack to be able to control the rate at which data is transmitted. 

3. Multimedia support: MDPC is designed to handle multimedia traffic, which 

includes audio and video streams. Therefore, the operating system and network stack 

must support multimedia traffic. 

4. Hardware requirements: The hardware requirements for MDPC depend on the 

size and complexity of the network. In general, MDPC can be implemented on any 

modern computer hardware with a network interface card (NIC). 

5. Software requirements: To implement MDPC, the researcher will need to install 

the congestion control module that supports the MDPC algorithm. This module can 

be a part of the operating system or a separate software package that needs to be 

installed. 

To implement MDPC, the researcher needs a modern operating system and network 

stack that support multimedia traffic, as well as hardware with a network interface 

card. Additionally, he or she need to install a congestion control module that 

supports the MDPC algorithm. 

The researchers have conducted several studies on MDPC and have found that the 

alternative systems that are asymmetric in nature other than the traditional systems 

impact the “McEliece cryptosystem”. The system of McEliece is considered to be 

based on the codes of “QC-MDPC” that is considered to have an extremely 
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interesting contribution since it has excellent performance on the limited sources and 

embedded systems. This code also extends the concept of lower density with a parity 

check that makes use of a certain matrix that checks the parity with the moderated 

sparse [44]. This also leads the procedure to a significantly degraded performance 

of error correction. The MDPC decodes certain instances that attempt to decode the 

complicated coding. The random parity check matrix and the random error factor 

are considered to be generated through the computer corresponding syndrome. It 

prints the instances every five seconds that are generated and distributed with the 

number of iterations it will be required to decode. 

The MDPC codes are considered the LDPC codes of greater density than the usually 

adopted applications for telecommunication. This also leads to worse means of error 

correcting capability. However, the cryptography based on the MDPC code is not 

interested in correcting several errors but only a specific number of errors that ensure 

and the level of security that is a condition, which is satisfied by the codes of MDPC. 

The benefits of using the MDPC code include many benefits. The MDPC codes 

reduce the distinguishing problems related to McEliece, which includes the problem 

of decoding the codes that are linear [44]. The attacks of message against the scheme 

is also required in reducing the problem along with the security of providing the 

scheme that has the benefit of reliance on a single and well-studied problem 

regarding the coding theory 
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CHAPTER – 3 

Proposed Mechanism 

3.1 Introduction 

      This chapter presents the research methodology for the proposed model for cloud 

IoT environment. The efficient algorithm for constrained IoT devices was covered 

in detail in this chapter. It began with an overview of lightweight efficient cloud 

storage and its inherent difficulties, which were presented in sections 3.1 and 3.1.2. 

The overview of the efficient algorithm then provided in section 3.4, highlighting 

the two-step process of IoT device authentication and resource-efficient message 

encryption. The efficient AES-based algorithm's implementation pseudocode is 

shown, and it describes the encryption and decryption procedures as they are 

described in sections 3.5 and, respectively. 

3.2 Design Research Methodology 

      The Design Research Methodology for thesis on IoT and cloud storage focuses 

on developing an efficient, scalable cloud storage system for IoT environments. 

approach involves a comprehensive examination and integration of various 

components. Firstly, analyse the dataset and simulation tools used, ensuring 

compatibility with IoT requirements. The operating system is chosen for optimal 

performance in processing IoT data. A significant part of methodology includes the 

adoption and modification of algorithms, notably Content-Defined Chunking (CDC) 

and standard chunking algorithms, tailored to enhance data processing and storage 

efficiency. The system architecture is designed with specific considerations for IoT 

applications, ensuring seamless integration and operation. Additionally, we assess 

software requirements, benchmarking standards, and design goals to ensure research 

meets the evolving needs of IoT environments. This methodology aims to create a 
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robust, adaptable cloud storage solution, addressing the unique challenges in IoT 

data management. 

3.3 MDPC Algorithm and Difference with DPC 

      MDPC (Multiplicative-Divisive Probabilistic Congestion Control) and DPC 

(Deterministic Probabilistic Congestion Control) algorithms both aim to manage 

network congestion, yet they differ in their approach. MDPC operates by 

probabilistically increasing or decreasing the congestion window size based on 

network conditions, utilizing multiplicative and divisive factors to adjust the window 

size dynamically. In contrast, DPC employs a deterministic approach, where the 

congestion window size is adjusted based on predetermined thresholds and 

probabilities, without the multiplicative and divisive factors utilized in MDPC. 

While MDPC offers adaptability to varying network conditions through probabilistic 

adjustments, DPC provides deterministic control over congestion window size 

changes, potentially offering more predictable behavior in certain network scenarios. 

3.3.1 Dynamic Programming with Clustering (DPC) Algorithm 

         The DPC algorithm combines dynamic programming with clustering 

techniques to reduce the computational complexity of solving optimization problems 

with large state spaces. It involves the following steps: 

1) Clustering: Initially, the state space is divided into clusters based on certain 

similarity measures. Clustering helps in grouping similar states together, reducing 

the overall size of the state space. Like DPC, the state space is initially partitioned 

into clusters using clustering techniques. Clustering helps in reducing the complexity 

of the problem by focusing on smaller, manageable subsets of the state space. 

2) Dynamic Programming within Clusters: Within each cluster, dynamic 

programming techniques are applied to find the optimal solution. By solving smaller 
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subproblems within clusters, the computational complexity is reduced compared to 

solving the entire problem space. 

3) Inter-Cluster Communication: Information exchange or communication 

between clusters is facilitated to ensure coherence and consistency in the final 

solution. Inter-cluster communication can involve sharing boundary information, 

optimal policies, or other relevant data. 

3.3.2 Multi-Point Dynamic Programming 

         Dynamic programming techniques are applied to each cluster independently to 

find the optimal solution within each cluster. The dynamic programming process 

considers multiple decision points or stages, allowing for sequential decision-

making. 

3.3.2.1 Inter-Cluster Communication 

           Similar to DPC, communication between clusters is essential to ensure 

coherence and consistency in the final solution. Inter-cluster communication 

involves sharing information about optimal policies, boundary conditions, or other 

relevant data. This method involves a detailed comparison and contrast of existing 

cloud storage systems, examining their various features and performances. The core 

of this methodology is the development and application of a specialized 

benchmarking tool designed for assessing the efficiency, flexibility, and user-

friendliness of cloud storage systems. In the initial stage, the research involves 

gathering data about various cloud storage solutions currently available. This step 

includes examining the infrastructure of these systems, understanding their data 

organization, storage capacities, scalability, and the nature of their virtualized 

storage environments. This examination helps in identifying the key characteristics 

that impact the performance and cost-effectiveness of these services. The research 
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moves to a critical comparison of these cloud storage solutions. This comparison is 

not merely theoretical; it involves practical analysis based on specific parameters 

such as storage capacity, scalability, ease of access, and cost-efficiency. The focus 

is on how these systems manage and maintain data, their ability to scale up or down 

based on user requirements, and the overall user experience in terms of managing 

and accessing stored data. 

     An essential part of the methodology is the creation of a benchmarking Concept. 

This Concept is designed to test operational cloud storage systems, evaluating them 

on various performance metrics. The tests conducted using this tool are critical in 

assessing the efficacy of the cloud storage systems under real-world conditions. 

These tests are aimed at determining the systems' efficiency in data management and 

retrieval, their response to varying storage demands, and their cost-effectiveness. 

The research methodology also includes analyzing open-source cloud storage 

systems through code analysis to obtain reliable results. This aspect is crucial as it 

provides insights into the architecture and design principles of these systems, 

contributing to a deeper understanding of their operational efficiencies. The research 

methodology is a blend of theoretical study and practical evaluation, aimed at 

providing a comprehensive analysis of cloud storage systems and developing an 

effective benchmarking tool for their assessment. 
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Figure 3.1: Flowchart Methodology 

3.4 The Proposed System 

      The MDPC algorithm is a cloud storage mechanism that is designed to efficiently 

manage and store data in IoT environments. This algorithm is based on a 

probabilistic approach that enables efficient utilization of cloud storage resources 

while ensuring high reliability and availability of data. Multiplicative-Divisive 

Probabilistic Congestion Control (MDPC) is a congestion control algorithm used in 

computer networks to manage the flow of data packets and prevent congestion. It 

operates by dynamically adjusting the congestion window size based on network 

conditions. MDPC encompasses various subtypes or kinds, each with its specific 

characteristics and approaches to congestion control. 

     Multiplicative Increase Divisive Decrease (MIDD): In this subtype of MDPC, 

the congestion window size is increased multiplicatively when the network is 

operating efficiently and there are no signs of congestion. However, when 

congestion is detected, the window size is reduced divisively to alleviate the 

congestion and prevent further packet loss. MIDD aims to strike a balance between 

exploiting available network capacity and avoiding congestion. 
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1. Adaptive MDPC: Adaptive MDPC is a subtype that adjusts its congestion 

control parameters dynamically based on observed network conditions. It 

continuously monitors network metrics such as round-trip time (RTT), packet 

loss rate, and available bandwidth to adapt its multiplicative and divisive 

factors accordingly. By adapting to changing network conditions, adaptive 

MDPC aims to optimize network performance and minimize congestion-

related issues. 

2. Probabilistic MDPC: Probabilistic MDPC introduces randomness into the 

congestion control process by probabilistically increasing or decreasing the 

congestion window size. Instead of deterministic rules, probabilistic MDPC 

utilizes probabilities to adjust the window size, allowing for more flexibility 

and adaptability in response to varying network conditions. This approach 

helps prevent synchronization effects and can lead to more stable network 

behavior. 

3. Delay-based MDPC: Delay-based MDPC focuses on controlling congestion 

based on the observed network delay. It adjusts the congestion window size 

proportionally to the measured delay, aiming to maintain an optimal level of 

delay while avoiding congestion. By considering delay as a congestion 

indicator, delay-based MDPC can effectively manage congestion in networks 

with variable latency. 

Overall, MDPC and its subtypes provide a flexible and adaptive approach to 

congestion control in computer networks. By dynamically adjusting congestion 

window sizes based on network conditions, MDPC algorithms aim to optimize 

network performance, minimize packet loss, and prevent congestion-related issues. 

Each subtype of MDPC offers unique features and capabilities, allowing network 
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administrators to choose the most suitable variant for their specific networking 

environment and requirements. 

 

Figure 3.2: Design Research Mechanism  

Programming language: MDPC can be implemented in a variety of programming 

languages, including C, C++, and Python [59]. The choice of language would depend 

on factors such as performance, ease of development, and existing code base. 

Required libraries: The MDPC algorithm may require certain libraries, such as  

(Multiple Precision Arithmetic Library) for high-precision arithmetic or OpenSSL 

for cryptographic operations . Configuration and optimization: The performance of 

the MDPC algorithm can be improved through various configuration and 

optimization techniques, such as parallel processing, vectorization, and code 

optimization. These techniques would depend on the specific implementation and 

hardware used. Overall, running the MDPC algorithm requires a standard computer 
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system with modern hardware, an appropriate operating system and programming 

language, and any required libraries and configurations for optimal performance.  

     The MDPC algorithm works by dynamically adjusting the storage capacity 

allocation for each IoT device based on its data usage patterns and storage 

requirements [73]. It achieves this by maintaining a probabilistic congestion control 

mechanism that ensures that the available storage resources are optimally utilized. 

3.4.1 MDPC Algorithm Works in Two Phases  

1. Probabilistic Allocation: In this phase, the algorithm assigns storage capacity 

to each device based on a probabilistic model that takes into account the 

device's data usage patterns and storage requirements. The algorithm calculates 

the probability of congestion for each device and assigns storage capacity 

accordingly. 

2. Dynamic Adjustment: In this phase, the algorithm monitors the data usage 

patterns of each device and dynamically adjusts its storage allocation to ensure 

optimal utilisation of the available resources. The algorithm also considers the 

reliability and availability requirements of the data and ensures that the storage 

capacity allocation is sufficient to meet these requirements. 

     The MDPC algorithm has several advantages over traditional cloud storage 

mechanisms. First, it optimises the utilisation of cloud storage resources, which leads 

to reduced storage costs. Second, it ensures high reliability and availability of data 

by dynamically adjusting storage allocation based on data usage patterns. Finally, it 

is highly scalable and can handle large numbers of IoT devices with varying data 

usage patterns. 
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Overall, the MDPC algorithm is an efficient cloud storage mechanism for IoT 

environments that can help organisations reduce storage costs and ensure high 

reliability and availability of data. 

3.5 Simulation Used 

      A study has been implemented that focuses upon encryption algorithms 

implemented by researcher Habeeb, Ahmed. (2018). Multiplicative-Divisive 

Probabilistic Congestion Control (MDPC) algorithm is a variant of the Additive-

Increase Multiplicative-Decrease (AIMD) algorithm. It is used to control the rate of 

data transmission in computer networks to avoid congestion [76]. MDPC adds a 

probabilistic component to the AIMD algorithm to reduce the chances of congestion. 

In this algorithm, the congestion window size is multiplied or divided by a factor 

depending on the network conditions. 

    To perform configurations and settings of the MDPC algorithm, the researcher 

will use the following algorithm and code: 

Algorithm (3.1): Multi-Dimensional Partial Congestion Control (MDPC) 

//Initialize Variables 

1: Set cwnd (Congestion Window Size) to initial congestion window size 

Set threshold to initial threshold value. 

Set ack_counter to 0 

Set nack_counter to 0 

2: While true 

3:  if received_ack(): 

4:   Increment ack_counter by 1 

5:  end 

6:  if ack_counter ≥ threshold 

7:   Multiply cwnd by 2      (Multiplicative Increase) 

8:   Reset ack_counter to 0 

9:   Reset nack_counter to 0 

10:  end 

11:  Else if received_nack() 
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12:   Increment nack_counter by 1 

13:  end 

14:  if nack_counter ≥ threshold 

15:   Divide cwnd by 2      (Divisive Decrease) 

16:   Reset ack_counter to 0 

17:   Reset nack_counter to 0 

18:   Set threshold to calculate_new_threshold(threshold) 

19:   Send data with congestion window size cwnd 

20:  end 

21: end 

Where:  

cwnd be the current Congestion Window Size. 

threshold be the threshold value for determining congestion control actions. 

ack_counter be the count of received acknowledgments. 

nack_counter be the count of received negative acknowledgments (NACKs). 

Upon receiving an acknowledgment: 

• If ack_counter > threshold: 

cwndnew = cwnd x 2 (Multiplicative Increase). 

Upon receiving a negative acknowledgment: 

• If nack_counter > threshold: 

cwndnew = cwnd/2 (Divisive Decrease). 

Update threshold using a function to calculate a new threshold value. 

• Send data using the updated cundnew 

    The MDPC algorithm helps in providing a number of options that include securing 

the cryptographic exchange over the channel that is public with secure form of 

messaging and digital signature. Most of these types of systems are included in the 

number of the problems related to theory such as the factorization of the larger 

number with the discrete form of algorithm in the elliptic curve. Strong form of 
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cryptography is considered extremely essential for providing a secured electronic 

device for the consumers. These are the suspicious positions after the sleeping of the 

tentative position of each of the candidates. The “Block Rate of Error (BLER)” is 

also evaluated by simulation of the computer and the resultant represents the bit-

flipping algorithm that provides lower BLER that is compared in order to exist 

within the algorithms of decoding. 

3.6 MDPC Algorithm 

       MDPC (Multiplicative-Divisive Probabilistic Congestion Control) Algorithms 

play a key role in the benchmarking process. They are designed to analyze cloud 

storage systems from multiple dimensions, such as speed, reliability, and scalability. 

These algorithms provide a comprehensive understanding of how each cloud storage 

system performs under various conditions and workloads. 

3.6.1 Mathematical Model: 

1) Objective Function 

Let f (x) be the objective function to be optimized, where x is the vector of decision 

variables. The objective is usually either to maximize or minimize f(x). 

2) Constraints 

The optimization problem may have constraints that define feasible regions for the 

decision 

variables. These constraints can be represented as equality or inequality constraints, 

denoted as 

g(x) < 0 or h(x) = 0                                                (3.1) 

3) Decision Variables 

Let x = (x1, x2,...,n) represent the decision variables. These variables determine the 

solution to the optimization problem. 

4. State Space 
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The state space represents all possible states of the system at any given point in time. 

Each state 

is associated with a set of decision variables and constraints. 

Mathematical Formulation: 

Let's denote the following: 

• S: State space representing all possible states of the system. 

• A(s): Set of feasible actions or decisions available in state s. 

• T(s, a): State transition function representing the probability distribution of 

transitioning from state s to state s' after taking action a. 

• R(s, a): Immediate reward or cost associated with taking action a in state s. 

* V*(s): Optimal value function representing the maximum expected cumulative 

reward from state s to the terminal state. 

Q*(s, a): Optimal action-value function representing the maximum expected 

cumulative reward from taking action a in state s and then following the optimal 

policy. 

The dynamic programming recursion for MPDP can be formulated as follows: 

V*(s) = max {R(s, a) + Σ T(s,a, s') · V' (s')}                             (3.2) 

The optimal action-value function Q*(s, a) is given by: 

Q*(s, a) = R(s, a) +ΣT(s, a, s′) · V* (s')                                (3.3) 

In the project, the Multiplicative-Divisive Probabilistic Congestion Control (MDPC) 

algorithm serves as a pivotal component in optimizing data transmission and 

managing network congestion effectively. Integrated within the project's 

mathematical model, MDPC dynamically adjusts the congestion window size based 

on real-time network conditions. Utilizing a probabilistic approach, the algorithm 

detects congestion by calculating the probability of packet congestion, thus enabling 

proactive measures to mitigate potential congestion events. By employing both 
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multiplicative and divisive factors, MDPC ensures adaptive control of the window 

size: decreasing it by a larger multiplicative factor in the presence of congestion and 

increasing it by a smaller additive factor during efficient network operation. This 

dynamic adaptation to network conditions, including round-trip time, packet loss 

rate, and available bandwidth, enables MDPC to maintain optimal performance and 

efficiency. Evaluated within the project's benchmarking environment, MDPC 

undergoes rigorous testing and comparison with other congestion control algorithms 

to assess its effectiveness and suitability across various network scenarios. Overall, 

MDPC significantly contributes to the project's objectives by enhancing multimedia 

data processing and communication through efficient congestion management and 

optimization strategies. 

3.6.2 Properties MDPC Algorithm  

        The Multiplicative-Divisive Probabilistic Congestion Control (MDPC) 

algorithm is a type of congestion control algorithm used in computer networks to 

manage traffic congestion. Here are some key properties of the MDPC algorithm: 

Multiplicative and Divisive Feedback: The MDPC algorithm uses both 

multiplicative and divisive feedback mechanisms to adjust the congestion window 

size . Multiplicative feedback increases or decreases the window size by multiplying 

it by a factor greater or less than one, while divisive feedback divides the window 

size by a factor greater than one.  

1. Probabilistic Control: The MDPC algorithm is probabilistic in nature, meaning 

that it uses probability to determine the congestion window size .  This approach 

is more effective in managing congestion in networks with high levels of 

variability and uncertainty. 

2. Feedback Signal Estimation: The MDPC algorithm estimates the feedback 

signal based on the network conditions, such as the round-trip time, packet loss 
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rate, and available bandwidth .  It then uses this estimate to adjust the congestion 

window size. 

 

Figure 3.3: IoT Cloud Benchmark Architecture 

3. Fairness: The MDPC algorithm aims to provide fairness to all the flows 

sharing the network resources [51]. It achieves this by adjusting the 

congestion window size based on the number of flows and the amount of 

traffic each flow generates. 
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4. Stability: The MDPC algorithm is designed to be stable and avoid oscillations 

in the congestion window size . This is achieved through the use of appropriate 

feedback mechanisms and control parameters. 

5. Scalability: The MDPC algorithm is scalable and can be used in large-scale 

networks with a large number of flows. It can efficiently manage traffic 

congestion in such networks without compromising on performance. 

Overall, the MDPC algorithm is an effective congestion control algorithm that 

provides fairness, stability, and scalability in computer networks.  

3.6.3 Key Properties When Use MDPC in IoT Environment  

         When considering the use of the Multiplicative-Divisive Probabilistic 

Congestion Control (MDPC) algorithm in an efficient cloud storage mechanism for 

an IoT environment, some key properties are: 

1. Adaptability: The MDPC algorithm is adaptable and can adjust to changing 

network conditions . In an IoT environment, where the number and type of 

connected devices can vary significantly, the MDPC algorithm can 

dynamically adjust the congestion window size to accommodate the changing 

traffic load. 

2. Low Latency: In an IoT environment, low latency is critical for real-time 

applications . The MDPC algorithm is designed to achieve low latency by 

estimating the feedback signal based on the round-trip time, packet loss rate, 

and available bandwidth. 

3. Energy Efficiency: IoT devices often have limited battery life, and energy 

efficiency is critical [45]. The MDPC algorithm can help reduce energy 

consumption by avoiding unnecessary retransmissions caused by congestion. 

4. Robustness: The MDPC algorithm is robust and can withstand network 

disturbances such as link failures, node failures, and network partitions [48]. 
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In an IoT environment, where nodes can be added or removed frequently, the 

MDPC algorithm can adapt to the changes and maintain network stability. 

5. Scalability: The MDPC algorithm is scalable and can be used in large-scale 

IoT environments with a large number of devices. It can efficiently manage 

traffic congestion and provide fair access to network resources without 

compromising on performance. 

6. Security: In an IoT environment, security is a critical concern. The MDPC 

algorithm can be used in conjunction with secure communication protocols to 

ensure the integrity and confidentiality of data transmitted over the network. 

Overall, the MDPC algorithm is well-suited for use in an efficient cloud storage 

mechanism for an IoT environment, providing adaptability, low latency, energy 

efficiency, robustness, scalability, and security [47]. 

Here's a comparison table summarizing the overhead associated with the 

Multiplicative-Divisive Probabilistic Congestion Control (MDPC) algorithm 

compared to other commonly used congestion control algorithms:  

Overhead 

Type 

Overhead Description 

Header 

Overhead 

The MDPC algorithm requires additional header information to be 

added to each data packet to facilitate feedback and probabilistic 

control. This header overhead is generally small and can be 

managed with appropriate packet size optimization techniques. 

Feedback 

Overhead 

The MDPC algorithm uses feedback mechanisms to adjust the 

congestion window size based on network conditions [42]. This 

feedback involves the exchange of feedback packets between the 

sender and receiver, which can add some overhead to the network 

and increase the packet delay. However, the feedback overhead is 

generally small and can be optimized with appropriate feedback 

control parameters. 
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Probability 

Calculation 

Overhead 

The MDPC algorithm uses probabilistic control to determine the 

congestion window size [46]. This involves the calculation of 

probability distributions, which can add some overhead to the 

network in terms of processing power and memory usage. However, 

this overhead is generally small and can be optimized with 

appropriate probability distribution estimation techniques. 

Fairness 

Overhead 

The MDPC algorithm aims to provide fairness to all the flows 

sharing the network resources. To achieve this, it requires some 

overhead in terms of monitoring and controlling the traffic flows to 

ensure that they are all treated fairly. This fairness overhead is 

generally small and can be optimized with appropriate fairness 

control parameters. 

Overall, the data input stream overhead associated with the MDPC algorithm is 

generally small and can be managed with appropriate optimization techniques. The 

overheads related to feedback, probability calculation, and fairness control are 

generally manageable and can be optimized with appropriate control parameters and 

network optimization techniques. 

Compared to some other congestion control algorithms, MDPC has some overhead 

due to the nature of its probabilistic and feedback-based approach. Here are some 

key overheads associated with the MDPC algorithm: 

Computational Overhead: The MDPC algorithm requires frequent estimation of 

network conditions such as round-trip time, packet loss rate, and available 

bandwidth. This estimation involves some computational overhead in terms of 

processing power and memory usage. 

Feedback Overhead: The MDPC algorithm uses feedback mechanisms to adjust the 

congestion window size, which involves the exchange of feedback packets between 

the sender and receiver [56].  This exchange can add some overhead to the network 

and increase the packet delay. 



CHAPTER THREE                                                                PROPOSED MECHANISM 

76 

Probability Calculation Overhead: The MDPC algorithm uses probabilistic control 

to determine the congestion window size [46]. This involves the calculation of 

probability distributions, which can add some overhead to the network in terms of 

processing power and memory usage. 

Fairness Overhead: The MDPC algorithm aims to provide fairness to all the flows 

sharing the network resources. To achieve this, it requires some overhead in terms 

of monitoring and controlling the traffic flows to ensure that they are all treated 

fairly. 

Overall, the MDPC algorithm has some overhead associated with its feedback-

based, probabilistic, and fairness-oriented approach. However, these overheads are 

generally reasonable and can be managed with appropriate control parameters and 

network optimization techniques. Compared to some other congestion control 

algorithms, such as TCP Reno, MDPC is generally considered to have lower 

overhead and better performance in networks with high levels of variability and 

uncertainty. 

3.7 Enhanced Congestion Control Mechanism 

      To modify the Dynamic Prime Chunking (DPC) algorithm into the 

Multiplicative-Divisive Probabilistic Congestion Control (MDPC) algorithm, the 

following changes can be made: 

Introduce a window size: In the MDPC algorithm, a window size is introduced to 

limit the number of packets in flight. The window size determines the amount of 

data that can be transmitted without acknowledgement from the receiver. The 

window size is adjusted dynamically based on the current network conditions. 

Additive-increase, multiplicative-decrease: The window size is updated based on the 

success or failure of packet transmission. If a packet is successfully transmitted, the 

window size is increased by a small additive factor. If a packet is lost, the window 
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size is decreased by a larger multiplicative factor. This is similar to the Additive-

Increase/Multiplicative-Decrease (AIMD) algorithm used in TCP congestion 

control. 

 

 

 

 

 

 

 

Figure 3.4: Additive-Increase/Multiplicative-Decrease 

Introduce a probabilistic approach: In the MDPC algorithm, a probabilistic approach 

is used to adjust the window size. The probability of a packet being marked as 

congested is calculated based on the window size and the congestion level of the 

network [67]. The higher the window size, the higher the probability of a packet 

being marked as congested. This probabilistic approach ensures that the window size 

is adjusted in a stable and efficient manner. 

Introduce a multiplicative-divisive component: In the MDPC algorithm, a 

multiplicative-divisive component is introduced to adjust the window size. If a 

packet is marked as congested by the network, the window size is decreased by a 

larger multiplicative factor. This helps to prevent congestion collapse in the network. 

Overall, the MDPC algorithm is a modification of the DPC algorithm that introduces 

a probabilistic approach and a multiplicative-divisive component to congestion 
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control [55]. This enables the algorithm to adjust the window size dynamically in 

response to changing network conditions, leading to better network performance and 

reduced packet losses. 

3.8 Analysing the MDPC's behaviour for the CDC's 

Multiplicative-Divisive Probabilistic Congestion Control (MDPC) is a congestion 

control algorithm that aims to regulate the congestion window size of a network 

transport protocol, such as TCP. In terms of the essential characteristics of 

congestion control, MDPC exhibits the following behaviors: 

1. Responsiveness: MDPC is designed to be responsive to changes in network 

conditions, including changes in available bandwidth and congestion levels. It uses 

feedback from the network in the form of packet loss and delay to adjust the 

congestion window size accordingly. 

2. Stability: MDPC is designed to be stable and avoid excessive oscillations in the 

congestion window size.  It achieves this by using a probabilistic approach to 

adjusting the window size, where the probability of increasing or decreasing the 

window size is based on the current congestion level. 

3. Fairness: MDPC is designed to be fair in its allocation of network resources among 

competing flows. It achieves this by using a multiplicative decrease and divisive 

increase approach to adjusting the congestion window size, which penalises flows 

that cause congestion and rewards flows that reduce congestion. 

4. Efficiency: MDPC is designed to be efficient in its use of network resources. It 

achieves this by dynamically adjusting the congestion window size based on the 

current network conditions, which allows it to maximize network utilization without 

causing congestion. 

Overall, MDPC exhibits the essential characteristics of congestion control by being 

responsive, stable, fair, and efficient in its regulation of network congestion. 
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However, the specific behavior of MDPC may depend on the implementation and 

configuration of the algorithm in a particular network environment. 

 

Figure 3.5: Implemented Model 

The figure 3.5 illustrates the comprehensive integration of the MDPC 

(Multiplicative-Divisive Probabilistic Congestion Control) algorithm within cloud 

storage system. At its core, the Cloud Storage System serves as the repository for 

multimedia data, facilitating efficient data management. The Data Retrieval Module 

ensures seamless access to stored data, while the Encryption Module enhances data 

security through encryption techniques. Additionally, the Deduplication Module 

optimizes storage space by identifying and eliminating duplicate data entries. The 

MDPC Algorithm Integration is pivotal, harmonizing the algorithm's functionality 

with the system's architecture. Key Generation and Performance Simulation 

Modules play essential roles, generating encryption keys and evaluating system 

performance, respectively. Through a User/Application Interface, stakeholders 
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interact with the system, ensuring user-friendly access and management of 

multimedia data. 

The MDPC codes are also designed using the binary cyclical through construction 

of the polynomial parity check that is obtained directly from the idempotent code 

using the cyclotomic cosets. The design of the MDPC codes include a lower 

complexity for the encoding and decoding scheme with the practical utilisation of 

the study. It also proposes a lower complexity of SISO diversity decoder [66]. The 

AD decoder includes the use of a small number of parity checks that are redundant 

and it attempts to minimise the operations that are not included in the regular 

algorithm. The decoding algorithms initially begins with decoding the length in with 

soft input vector that makes use of the regular algorithm sum product with (m * n) 

that is redundant according to the matrix of parity check that consists of the decoder 

that operates over the MDPC codes. 

3.9 Theoretical Comparison  

      Rabin is a well-known duplication technique for use with CDC algorithms; 

nonetheless, it has a very poor chunking throughput and a substantial amount of 

chunk size volatility. The TTTD broke up data into smaller pieces, but it was unable 

to pinpoint where data duplication was occurring to account for the larger chunk 

sizes. In addition, since the processing time has increased, it adds to the overhead 

that is associated with indexing. In the end, the chunking AE method was superior 

to the Rabin in terms of the number of low-entropy strings it removed. We suggest 

using the dynamic prime chunking algorithm as a means to improve the throughput 

and take the performance to an even higher level. 

● Low chunking throughput and time consumption are problems with 

Rabin.  
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● The TTTD algorithm adds a minimum and maximum threshold to lessen 

chunk volatility. The threshold is applied using a backup divisor. For bigger 

chunks, data deduplication cannot be properly recognised. Additionally, the 

longer processing times result in extra expense for indexing.  

● Deduplication efficiency is also much greater in AE. Additionally, the 

computational cost is greatly reduced, and the tiny chunk variance is raised. 

To reduce the computational cost in the Multiplicative-Divisive Probabilistic 

Congestion Control (MDPC) algorithm, the following techniques can be employed: 

● Use Fixed Probability: Instead of calculating the probability of packet 

marking based on the window size and congestion level of the network, a fixed 

probability can be used [45]. This eliminates the need for computing the 

probability for each packet, which reduces the computational cost. 

● Limit the number of packets marked: Instead of marking every congested 

packet, only a limited number of packets can be marked. This reduces the 

number of computations required to mark packets and also reduces the amount 

of feedback required from the network. 

● Use Sampling: Instead of monitoring every packet in flight, a sampling 

approach can be used to monitor a subset of packets. This reduces the amount 

of monitoring required and reduces the computational cost. 

● Use Approximation Techniques: Instead of using exact calculations, 

approximation techniques can be used to estimate the probability of packet 

marking. This reduces the computational cost while still providing a 

reasonable estimate of the probability. 

● Reduce the number of parameters: The MDPC algorithm has several 

parameters that need to be adjusted, such as the window size, the additive and 
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multiplicative factors, and the probability of packet marking [66]. By reducing 

the number of parameters, the computational cost can be reduced while still 

maintaining good network performance. 

Overall, these techniques can help to reduce the computational cost of the MDPC 

algorithm while maintaining good network performance. It is important to strike a 

balance between computational cost and network performance, and these techniques 

can help achieve that balance. 

3.10 SHA -1 - Method Used to Eliminates Redundancies  

       The SHA -1 fingerprint technique is used by the Cryptographic Hash Function 

method to remove duplicate data and reduce redundancies at the full file or chunk 

level. The data deduplication procedure divides the incoming information into a 

variety of fragments. 

SHA-1 is the original 160-bit hash function has a similarity to the earlier MD5 

algorithm.  

Destor uses the SHA-1 cryptographic hash algorithm in order to locate and get rid 

of the superfluous piece. The system is subjected to experimental testing in order to 

investigate the effects that the different chunk sizes and throughput have. The 

processing time as well as the chunk time that is executed in the system is the 

performance. 

Steps Followed 

● Padding of Bits 

● Append Length 

● Divide the input 

● Initialize variable 

● Process blocks 
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The technological overlap between the database redundancy, database backup and 

often lead to certain confusion however, each has a separate role to play in order to 

safeguard and streamline the data used. The backup is considered significant in order 

to create a duplicate copy of the data at a particular time point, which is ideally kept 

as multiple historic copies. The redundancy also establishes a straight copy for the 

entire system, which is considered ready to take over if the system originally fails. 

The backup also offers a certain level of redundancy that is neither considered the 

solution that is standalone [67]. The primary copy of the data that is selected reduces 

the data redundancy that is seen with the aim of retaining the data in the long term. 

All the data is continent within the backup that is ultimately ending to achieve that 

is really considered to be the solution for the backup but a complement to provide 

an optimised data storage procedure. 

The incremental and differential backups also help in filling up the gaps in between 

the full backups and includes storing any type of changes to the data. It is also 

required as a fraction of the cycles in the CPU with the bandwidth and the storage 

space down the data loss risk is considered greater than the full backup restoring the 

times, which are considered slower [61]. Elimination of data is considered 

significant and it reduces the amount of the data that is required to be transferred or 

to be stored by eliminating and identifying both inter-object and intra-object. These 

are duplicated elements of data with the pointer all the reference to the unique copy 

of data.  

The data redundancy increases the disparities. It includes preserving the data within 

the multiple areas that can cause the disparity of the information, which fails in 

updating across all the locations. This can also happen if the real storage location 

changes by the copies do not. It also creates certain opportunities for corruptive data. 

Data corruption occurs if something damages the information during transferring the 



CHAPTER THREE                                                                PROPOSED MECHANISM 

84 

data or creating the procedure. This also means that storing several copies of similar 

data can provide more opportunities for data corruption. The costs are also 

considered for more data to be preserved. The data return density is considered costly 

to be maintained and to be interesting whether it is considered intentional or 

accidental. 

The various ways that can be used in order to reduce the data redundancy, that is 

seen to include normalising the database. The normalisation of the database includes 

arranging the data into the database in an efficient manner ensuring the elimination 

of redundancy. This procedure also shares the database of the company that contains 

the details, which are read similarly throughout the entire record [61]. The 

normalising data also includes range in the tables and columns of the database in 

order to ensure that these are correctly and forced with their dependency. The various 

companies are considered to have certain special sets of the criteria about data 

normalisation, which are considered different approaches for data normalisation. 

3.11 Tool for Cloud Storage in IoT  

3.11.1 Software Requirements  

When designing and developing software, it is best practice to first thoroughly 

understand the product's intended use. Here is a rundown of everything you'll need 

to meet BenchCloud's functional specifications: 

● Authentication and authorization for cloud services.  

Consumer identification is confirmed through confirmation, and their permissions 

and privileges are established through authorisation. Despite both of these phrases 

have a similar sound; they serve different but just as important functions in 

protecting systems and information [68]. It is essential to comprehend the 

differences. They establish a system's reliability when taken together. 

● Support various cloud storage services and product vendors.  
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A “CSP (cloud service provider)” is a third-party firm that offers expandable 

hardware and software, such as cloud-based processing, storage, structure, and 

programming services, that organisations may use on request across an internet 

connection [69]. Data is sent over a communication link, usually through the web, 

and kept in distant data centres where it is up-to-date, controlled, and eventually 

made accessible to subscribers as part of a cloud storage structure. 

● Support various file operations, such as sharing, downloading, and 

uploading. 

Installing a “File Transfer Protocol (FTP)” client is the most popular approach for 

transmitting content to the website. Files may be sent coming from a single device 

(individual system) to a different one (webserver) via “FTP (File Transfer 

Protocol)” [61]. Anyone is able to transfer (upload, download) files from a single 

system to a different machine using FTP software that resembles an archives editor.  

● Support a variety of file generators to produce files with various patterns. 

MPS (Mathematical Programming System) manages an index of file formats, for 

every that connects an alphabetical facility using any number of naming designs. 

These kinds of documents are used for expressing linguistic-specific capabilities 

(such as “syntax annotation” and “code estimation”) in files embodying different 

dialects and techniques [62]. Every aspect of applicable naming sequence is included 

in the directory of file formats by default, yet it may add fresh file varieties for 

language-specific folders and modify the names of the file sequences that go with 

current file formats.  

● Assistance with multithreaded operations  

A program or computer’s “operating system (OS)” that supports numerous users 

simultaneously despite necessitating numerous copies of the software to execute on 

a device is known as multithreading. Several inquiries travelling an identical person 
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can be handled via multithreading as well. Most operating systems offer combined 

“kernel-level threads” and threads created by users [69]. Solaris may be one of these 

instances. Different threads operate concurrently in the identical platform in this 

particular approach. 

● Compile benchmarking results into statistics.  

Through comparing a business's accomplishments to that of other people, and 

comparable businesses, anyone may determine whether, there is an achievement 

discrepancy, which can be filled by enhancing its own efficiency. Observing other 

businesses may show how long it is needed to boost an organization's productivity 

and establish a stronger position in the sector. The company may seek to increase 

productivity exponentially by discovering points at which it wishes to make 

improvements and measuring its present standing compared to rivals [61]. Through 

applying benchmarking in such a way, organisations have been able to surpass their 

rivals and raise the standard of excellence. 

● Automatically record and preserve benchmarking results.  

The “Symanto Insights Platform” analyses every feedback and summary's wording 

to determine if that writer is endorsing the business disparaging the business, or 

using a tone, which is neutral. A “Net Promoter Score (NPS)” is calculated by 

subtracting the opponents from the marketers. An excellent NPS is a sign of devoted 

and satisfied consumers [62]. The “Symanto Insights Platform” connects to popular 

online ratings and social networking sites like Amazon, Trustpilot, and Google 

Reviews to make it simple to quickly collect and evaluate countless language inputs. 

● Record network packets while benchmarking is being done.  

The speed of transmitting data connecting two computers installing “Performance 

Test” needs to be tested using the “PassMark Advanced Network Test”, which 

happens to be a component of “Performance Test”. The storage device will be 
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among the devices, which will remain idle while it anticipates an internet link [70]. 

Any TCP/IP connectivity option is compatible with the internet sample evaluation 

including Ethernet, wireless networking (WiFi), local area networks (LAN), wide 

area networks (WAN), cable modems, dial-up modems, and ADSL. Exceptionally 

fast gigabyte Ethernet connectivity may be benchmarked according to the 

application's optimisation for minimal CPU time usage [70].  

● Able to test cloud storage systems' native clients and web APIs. 

An API, or application-programming interface, for cloud computing, interfaces a 

natively installed software to an online-based database so that users can transfer and 

receive content as well as manipulate the data held there. Similar to disk-based 

storage, a cloud-based memory framework is essentially another prospective 

medium for the programme [63]. A cloud API is unique based on the data storage 

provider it is intended to support. An internet-based archiving provider could. For 

instance, provide an API that can generate, gather, and destroy items on that system 

in addition to carrying out similar item-related operations [70]. A file preservation 

API supports actions like sending and receiving items and distributing documents 

with many individuals at the component and category layers. 

3.12.2 The specifications for a benchmarking tool for cloud storage systems  

The global rise of cloud computing along with the development of many cloud 

storage systems have been built with the objective of providing decentralised and 

reliable file storage. Therefore, it is important to be well aware of their specific 

features and performances along with the ways through which it could be optimally 

used. The market witnesses an exponential rise in cloud storage systems nowadays, 

and therefore certain guidelines could be instrumental in choosing the appropriate 

system that can potentially satisfy the requirements. [60] The storage systems are 
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found to have more or less similar functions and therefore springs up the requirement 

of benchmarking it. 

These days, there are a great number of cloud storage solutions available, and there 

are always new companies entering the market. As a result, we need some direction 

to pick the proper solution that will provide the highest level of satisfaction for  

needs. We need to evaluate these cloud storage systems since the performance of the 

systems is a major concern that we need to take into account, and because many 

cloud storage systems share similar duties, this is why we need to compare them. 

The following are some examples of probable situations when it may be beneficial 

to have a benchmark. 

❖ Select the quickest cloud storage solution for regular usage  

Suppose a user is going to give any cloud storage system a try so that he may store 

his data in the cloud and synchronise the information across the computers in his 

home and office. The customer's primary concern is that the service should be able 

to upload and download files as quickly as feasible. A benchmarking has to be done 

in order to establish which cloud system has the greatest performance when it comes 

to the uploading and downloading of files. This is necessary since different cloud 

systems have different network bandwidth and different locations for their data 

centres.  

Certain aspects should be borne in mind prior to choosing the ideal cloud storage 

system such as the storage location as the physical location of a cloud server can 

potentially affect the recovery and the performance. Simultaneously, there could be 

issues regarding compliance or regulatory requirements on data storage locations 

therefore, the decisions regarding locations should be based on the importance of the 

data, authorisation and cost. [61] In addition to this, issues regarding security are of 

top concern when it comes to cloud storage and therefore it should be emphasised 
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that while the protection of the data is the responsibility of the cloud service provider 

the user also is responsible to maintain security guidelines while transferring data on 

cloud server.   

Additionally, performance evaluation is yet another important factor in the process 

of finding the appropriate cloud service. Certain performance related aspects such 

as response time, processing time, bandwidth, latency, CPU, infrastructure, RAM 

and so on are critical in the process of choosing cloud storage. In addition to this, the 

viability of integrating along with other applications should also be prioritised. 

Therefore, prior to selecting the cloud storage “Application Program Interface 

(APIs)” should be assessed. [63] In addition to this, the compatibility of the cloud 

server with the existing applications as well as storage devices should be checked in 

order to ensure the ease of accessibility. 

❖ Find out how to use a cloud storage system as a backend storage system 

for web and mobile apps  

Many of the web applications that we use today store the data of their users in the 

user's own personal cloud system, as opposed to storing the data in a dedicated server 

that is maintained by the application's developer. This is made possible by the 

development of SaaS and mobile computing. These kinds of web apps that are hosted 

in the cloud come with a few distinct benefits. To begin, the creator of the 

programme does not have to keep any dedicated storage servers running, which 

means that the overall cost may be significantly lowered. Second, the fact that the 

data is saved in the user's own cloud space, which is maintained by a reliable cloud 

storage service provider, allows the user to have peace of mind regarding their data. 

This, in turn, will make the application more appealing to users who place a high 

priority on the security of their data. Thirdly, the data that is saved in the cloud is 

able to take use of certain additional features offered by the cloud, such as the ability 
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to share and synchronise files. Site441, a web application that is built on Dropbox 

and has the ability to convert Dropbox files into websites that are available to the 

public, is one example of this kind of programme. As the developer of an application 

that makes use of a cloud storage service, he may need to be aware of the most 

effective technique to make use of the service. For instance, while uploading data to 

the cloud, is it possible to make advantage of multithreading? If the answer to that 

question is affirmative, then how many different threads should be employed to 

provide the highest possible performance? Should the data be divided up into many 

files of a lower size before it is uploaded if we want the uploading of enormous 

amounts of data to go as smoothly as possible? In order to provide answers to such 

issues, a benchmark is often seen as being beneficial for evaluating the levels of 

performance achieved by using various cloud storage service utilisation 

methodologies. 

❖ Analyse the effectiveness of Cloud Storage Systems for a certain use case  

The vast majority of the cloud storage solutions that are available to us today were 

developed for typical, day-to-day activities such as the casual archiving of images, 

audio tracks, and documents. However, being a cloud storage system with a broad 

range of applications, it is possible to utilise it for purposes other than the typical, 

everyday ones. It is feasible, for instance, to utilise a cloud storage service as the 

backend storage system of an Internet of Things thesis   with multiple sensors that 

constantly take data from the environment and transfer it simultaneously to the 

backend. This particular use case differs from others in that it involves 

simultaneously uploading a huge number of little files that have been generated in 

enormous quantities. A benchmark is always required in order to investigate whether 

or not a cloud-based storage system can be used in a certain situation and to evaluate 

its performance.  
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In a nutshell, doing benchmarks on cloud storage systems is beneficial in a variety 

of different ways. In point of fact, we are able to do ad hoc benchmarking manually; 

but, doing so will need a significant amount of time, and the procedure itself will be 

difficult to replicate. In addition, if one has to carry out sophisticated benchmarks, 

such as multithreaded uploading with random file creation, it is often impossible to 

avoid the need of developing scripts and programming. Because of these drawbacks 

of manual benchmarking, an automated benchmarking tool is the key to improving 

the efficacy of benchmarking jobs. This is the motivation for the creation of 

BenchCloud, which was developed specifically for this purpose. 

3.11.3 System Architecture Goals 

a. Flexibility  

Flexibility in BenchCloud refers to its adaptability to a wide range of benchmarking 

needs. This adaptability is crucial because benchmarking tasks vary greatly in their 

objectives and methodologies. To achieve this, BenchCloud is designed with high 

configurability and extensibility. Configurability allows users to make detailed 

adjustments to benchmarking parameters, such as selecting the cloud storage system 

to test, defining the operations (like uploading or downloading files), setting the 

number of operations, and determining the number of threads for execution. 

Extensibility, on the other hand, ensures that BenchCloud can evolve to include new 

functionalities or support new cloud services without the need for extensive 

modifications to its existing components. This aspect of flexibility is especially 

important in cloud computing, where the ability to customize applications and access 

services from anywhere with an internet connection is highly valued. The cloud’s 

popularity has surged due to its ease in data access and storage, coupled with the 

capability to scale resources and swiftly adapt to consumer demands.  

b. Usability 
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Usability in BenchCloud is about providing an intuitive and accessible user 

experience. Recognizing that not all users have a background in Python, despite 

BenchCloud being developed in this language, the system uses configuration files 

for customization. These files allow users to easily modify almost every aspect of a 

benchmark’s settings without needing extensive technical knowledge. This approach 

to usability is particularly significant in cloud computing, where a diverse range of 

consumers and service providers often find the plethora of options overwhelming. 

With BenchCloud, usability is enhanced by simplifying the configuration process, 

making it more approachable for a wider audience. This feature is vital in helping 

users navigate the complexities of cloud services and make informed decisions, 

especially when selecting resources like virtual machines (VMs) for deployment. 

 

 

 

 

 

 

 

 

Figure 3.6: System Architecture of Bench Cloud 

Advantages that are unique and obvious for each cloud client, as well as cloud 

service providers, are what is driving the increase in the use of cloud computing. 

Consumers now find it more difficult to select a cloud provider due to the growth in 

both the number of operators and the type of services they deliver [67]. A difficulty 

for internet service providers is also presented by the variety of alternatives for 

constructing a cloud infrastructure, including cloud administration tools and various 
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networking and storage techniques. Considering choosing “virtual machines 

(VMs)” to use for the deployment of an implementation, asset benchmarking might 

be useful. Performance benchmarking is crucial to comprehend the dependability 

and volatility of the cloud-based services delivered [71]. 

3.11.4 System Architecture  

Bench Cloud utilizes an architecture that is layered. As can be seen in Figure 3.5, it 

is composed of three primary layers.  
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A. The API Driver Layer  

 

 

 

 

 

 

 

(a) Test via web APIs 

 

 

 

 

 

 

 

(b) Test via synchronization client 

Figure 3.7: (a), (b) Two styles of test architecture 
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sharing, and other similar features. The "uploading" and "downloading" of files to 

and from the tester's local file system is handled by a specialised driver known as 

the "Local FS driver." The Local FS driver, in contrast to other drivers, does not 

utilize online APIs that are accessed from cloud storage services. Instead, it simply 

performs standard file copy operations inside the confines of the local file system. 

In the event that you do not want to test against online APIs but rather to the native 

clients of some cloud storage services, you will need to make use of a local file 

system driver. The synchronisation client for these kinds of systems runs on the 

users' computers and synchronises the users' local data (often inside a designated 

synced folder) with the cloud.  

By "uploading" files to the synchronized folders and letting the synchronization 

client handle the processing and actual uploading operation, can study the client in 

some ways and see what kinds of optimization it engages in. Such a client may have 

interesting features that cannot be discovered by testing against web APIs directly. 

The high-level testing architecture may be split into two different forms, as 

illustrated in Figure 3.6, depending on whether a web API or client is to be evaluated. 

B. The Operators Layer  

The Operators Layer serves as an intermediary between the user-facing applications 

and the API Drivers layer, translating high-level actions into specific API calls. This 

layer encapsulates the complexity of interacting with various cloud storage APIs by 

providing a unified interface for common operations such as uploading and 

downloading files. By doing so, it abstracts away the idiosyncrasies of individual 

cloud storage providers, allowing developers to write code that is agnostic to the 

underlying cloud service. Developers can leverage the Operators Layer to build 

applications without the need for deep knowledge of the specific API details for each 

cloud storage service. This not only speeds up the development process but also 
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enhances the portability of applications across different cloud environments. The 

general-purpose tools within this layer are designed to be flexible and extensible, 

enabling them to support a wide range of cloud storage options and new features as 

they are released by cloud providers. The Operators Layer promotes a modular 

architecture where new functionalities can be easily integrated. It is engineered to 

handle error checking, retries, and other resilience strategies, thus ensuring reliable 

file operations. This layer plays a crucial role in the scalability and maintenance of 

cloud storage applications, as it simplifies the process of updating or swapping out 

API Drivers without significant changes to the application logic. 

C. The Benchmarking Runner Layer  

The task of parsing and loading configuration files and running the benchmark 

depending on the configuration falls within the purview of the Benchmarking 

Runner Layer. The logger is in charge of meticulously recording all of the precise 

actions and time spent while running benchmarks. When doing benchmarks for 

uploading files, benchmarking runners often utilizes a tool called a file generator to 

generate files depending on specified setup. There are four basic types of file 

generators that provide various file content patterns: 

⮚ Random File Generator. It generates files with unpredictable content 

that are difficult to compress well and very unlikely to share the same 

content as other created files.  

⮚ Identical File Generator. A succession of identical files is created using an 

identical file generator. It is crucial for evaluating a cloud storage system's file 

deduplication function. 

⮚ Sparse File Generator. It produces files with little material. Content that has 

repeated strings is said to be sparse. A high compression rate may be used to 

effectively compress files created by a sparse file generator. A crucial 
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component of evaluating a synchronisation client's file compression capability 

is the sparse file generator. 

⮚ Delta File Generator. A delta file generator creates a number of identically 

contented files that are all the same size. The contents of the remaining 

portions of the files are random and not similar. A synchronisation client's 

delta encoding functionality must be tested using the Delta File Generator. 

In order to capture and dump network packets during a benchmark, a trac capturer 

is included in the benchmarking layer. The resultant dump file's data format, PCAP6, 

is one that is widely used for recording network packets and can be read and analysed 

by a variety of packet capture and analysis programmes, including Wireshark7. The 

PCAP format keeps detailed records of the packets created, allowing for use in post-

analysis to examine the characteristics of the network traffic. 

3.11.5 Cooperation with other tools  

As mentioned in the previous section, BenchCloud offers a simple method for 

evaluating cloud storage systems and can track the amount of time spent on each 

stage of the benchmarking procedure. However, users could need more details in 

addition to saving time, and they might use certain other tools to examine the 

recorded packets to get further knowledge. BenchCloud does not provide a 

comprehensive packet analysis tool since there are already established tools 

available to do this. The tools for packet analysis that may be used in conjunction 

with BenchCloud are introduced in this section. 

Wireshark  

Wireshark is considered as a open source network protocol analysis software 

program that is prevalently considered as an industry standard program where it is 

found to capture network traffic ranging from ethernet to Bluetooth and stores it for 

offline analysis. It is found to be helpful in troubleshooting problems across a 
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network, in debugging protocol implementations, verification of applications and so 

on. [64] It is significant in tracing connections specifically in connection to 

cybersecurity issues along with keeping track of suspect networks and identifying 

bursts of network traffic. Therefore, it is widely utilised for troubleshooting 

networks, software communications, and analysis and so on.  

An open-source network packet analyzer is Wireshark. It is an effective tool for 

studying and debugging network traffic. Being cross-platform, it may be set up on 

other operating systems, including GNU/Linux, Mac OS X, Solaris, Microsoft 

Windows, etc. Both a command line tool and a visual user interface are available for 

Wireshark. Some of Wireshark's key characteristics include: 

⮚ Capture live packets from a network interface  

⮚ Import/Export packets  

⮚ Show packet data in a detailed and structured way  

⮚ Show the protocol-specific information of packets  

⮚ Filter packets according to various rules 6. Make various kinds of statistics 

tcpdump  

A packet analysis tool comparable to Wireshark is tcpdump. But tcpdump differs 

from Wireshark in that it only offers a command-line tool and no graphical user 

interface. Most Unix-like systems can run tcpdump, which is often supplied with 

these systems. Additionally, WinPcap8 is the name of the tcpdump port for 

Windows.   

Tcpdump is a packet analyser that is generally launched from the command line 

packet analysis. It is found to be incredibly useful as a packet analysis tool, as it is 

fast in examining individual packets or communication that therefore is one of the 

most widely used and prevalent analysis tools. It is beneficial in the sense that it 

provides consistent output, therefore, enabling manipulation of packet data with 
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scripts rather easily. [65] tcpdump provides beneficial insights regarding the 

behaviour of the networks, however, tcpdump is found to lack fancier analysis 

features as a result of its simplicity in comparison to other graphical tools like 

Wireshark. 
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CHAPTER - 4  

SYSTEM IMPLEMENTATION AND RESULTS  

 

4.1 Introduction  

Imagine a symphony of tiny data collectors scattered across a field, each capturing 

snapshots of sound, sight, and maybe even movement. These are wireless 

multimedia sensor nodes, whisperers of a thousand stories waiting to be told. Yet, 

their voices need a conductor, a path from their sensors to the world. That's where 

revolutionary routing protocol, guided by the magic of the MDPC algorithm, steps 

in. But before the music can play, need to carefully set the stage. 

Think of it like building a miniature city for these data whisperers. First, need houses 

– tiny, brainy homes called microcontrollers or processors. These whiz kids of tech 

will crunch numbers, run the operating system, and orchestrate communication. But 

each house needs a different kind of resident – powerful processing units for the 

central hub (the base station) and more frugal versions for the sensor nodes, all 

siphoning energy like careful mice from a tiny battery. 

Next, each house needs a rulebook, an operating system to keep things humming. 

Efficiency is key here, like a miniature traffic cop ensuring data flows smoothly, 

especially for those fleeting moments captured in a blink or a whisper. To build this 

city, need tools, screwdrivers of code and debuggers to fine-tune the system. And, 

of course, a language – not just any language, but one that tiny processors understand 

and that routing and MDPC algorithms can sing their magic in. 

But the city needs more than just houses and rules. Walls and gates come in the form 

of security measures, protecting the secrets these sensors hum. need power stations, 

too, carefully managing energy so data whisperers don't fall silent too soon. And 

finally, the city must be adaptable, growing and changing with new sensors and the 

whispers they bring. 
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By meticulously crafting this foundation, pave the way for symphony of sensors. 

With each component in place, novel routing protocol and the brilliant MDPC 

algorithm can take the stage, transforming whispers into a captivating chorus, a story 

told through a thousand tiny eyes and ears. 

A network topology that can support the wireless multimedia sensor network and 

the routing protocol. This can be a star, mesh, or tree topology. The topology should 

be designed to optimize energy consumption and reduce communication overhead. 

The protocol should be designed to handle the specific requirements of multimedia 

data, such as high bandwidth and low latency. The protocol should also be designed 

to handle the dynamic nature of wireless sensor networks, such as node failures and 

mobility. The protocol should be implemented on each sensor node and base station 

using the appropriate software tools and programming language. The nodes should 

be configured with appropriate parameters, such as transmission power, routing 

table, and MDPC parameters. The network should be tested to verify the 

effectiveness of the protocol and MDPC algorithm. 

Performance Evaluation: The performance of the protocol and MDPC algorithm 

should be evaluated in terms of throughput, delay, energy consumption, and packet 

delivery ratio. The evaluation should be performed in a real-world environment to 

ensure the effectiveness of the protocol in practical scenarios. Overall, the 

implementation of a novel routing protocol for wireless multimedia sensor networks 

using the MDPC algorithm will require careful consideration of hardware and 

software requirements, network topology, protocol design, implementation steps, 

and performance evaluation. 

4.2 deduplication Technique for cloud storage  

Cloud storage mechanism using deduplication technique can be applied in the above 

scenario to reduce storage overheads and improve storage efficiency. The following 

are the steps involved in implementing cloud storage using deduplication technique: 

1-Data Segmentation: The multimedia data collected from the wireless multimedia 

sensors can be segmented into smaller chunks. Each chunk can be given a unique 

identifier or hash value. 
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2-Data Deduplication: The hash values of the data chunks are checked for 

duplicates. If there are any duplicates, only one copy is stored in the cloud storage. 

This reduces the storage overhead and improves storage efficiency. It is an efficient 

approach in the process of handling and storage of a vast amount of data and is 

imminent in identifying duplicate content with the implementation of 

cryptographically secure hash signature. Simultaneously, it also helps in the 

reduction of the transmission of redundant data particularly in low-bandwidth 

network environments. 

3-Indexing: An index is maintained for all the data chunks and their hash values. 

This index helps in quickly identifying whether a particular data chunk already exists 

in the cloud storage or not. Indexing helps in smooth retrieval of entries from 

database files with the implementation of attributes that have already been indexed.   

4-Encryption: To ensure data security and privacy, the multimedia data can be 

encrypted before storing in the cloud storage. Only authorised users with proper 

authentication and access rights can decrypt the data. Encryption is generally 

employed in order to encrypt data in the process of outsourcing it.  

5-Data Retrieval: When a user requests for a particular multimedia data, the cloud 

storage system retrieves the corresponding data chunks and reconstructs the original 

multimedia data. Overall, cloud storage mechanism using deduplication technique 

provides efficient storage and retrieval of multimedia data in a secure and reliable 

manner. It reduces the storage overhead and improves storage efficiency by storing 

only unique data chunks. 

4.2.1 Data Segmentation 

Data segmentation is the process of grouping the similar categories of data based on 

the specific parameters in order efficiently use them. It helps the cloud service 

providers easily stock the data along with having proper knowledge of locations of 

all the files. It also helps the users easily access the correct data within a minimum 

amount of time [74]. During data segmentation, the memory is divided into small 

parts of various sizes in order to manage the memory of the cloud system effectively. 

Each small part of the memory is referred to as a segment of the process. 
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K-means clustering segmentation is used for the purpose of image segmentation in 

the cloud storage system. There is another algorithm called FCM, which helps to 

categorise the pixels of the image into different classes in order of their varying 

degree of membership. K-means is a very simplified machine-learning algorithm. It 

helps to classify any image through the implementation of specific numbers of 

clusters [75]. It initialises its working process by grouping the image space into K 

pixels, which represent the centroids of the K group. Each group is assigned with an 

object based on the distance of separation between them and the centroid. 

Here's an example of data segmentation for the above scenario with tables and 

graphs: 

Assume  have a multimedia data file of size 50 MB. To segment this data into smaller 

chunks,  can use a fixed-size segment of 1 MB each. This means  will have 50 

segments of 1 MB each. 

Table 4.1 Data Segmentation 

Segment Number Start Offset End Offset Size 

1 0 1048575 1 MB 

2 1048576 2097151 1 MB 

3 2097152 3145727 1 MB 

... ... ... ... 

50 47185920 48234495 1 MB 

 As shown in the table, the 50 MB multimedia data file is divided into 50 segments, 

each of 1 MB size. These segments are identified by their segment number and start 

and end offsets. The segmentation graph shows the 50 MB data file divided into four 

segments of 1 MB each. This segmentation process makes it easier to handle large 

multimedia data files and helps in efficient storage and retrieval of data in a cloud 

storage environment.  
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Figure 4.1 Segment Number 

As shown in figure 4.1, the segmentation chart displays the start and end offsets for 

each segment number. Here's what you can observe from the chart: 

X-axis: Segment Number - Each segment is represented along the x-axis, ranging 

from 1 to 50. 

Y-axis: Offset - The offset values (in this case, start and end offsets) are represented 

on the y-axis. 

Start Offset: Marked with circles ('o') - Each circle represents the start offset of a 

segment. 

End Offset: Marked with crosses ('x') - Each cross represents the end offset of a 

segment. 
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Trend: As segment number increases, both start and end offsets increase linearly. 

This suggests a consistent segmentation pattern where each segment has a fixed size. 

This chart provides a clear visual representation of the segmentation pattern, making 

it easy to understand how the data is divided into segments. 

4.2.2 Deduplication 

Here's an example of deduplication for the above scenario: 

Assume have collected multimedia data from 10 wireless multimedia sensors. Each 

sensor has captured a video of size 50 MB. To store this data in a cloud storage 

system, can use deduplication techniques to reduce storage overhead and improve 

storage efficiency. 

Table4.2: Deduplication  

Sensor ID Segment Number Hash Value 

Sensor 1 1 2f8085b95f5b26cf 

Sensor 1 2 3b9ebc534f2ea695 

Sensor 1 3 7e70d10845f8c2b2 

... ... ... 

Sensor 10 50 1a56830c8f153a0c 

As shown in table 4.2, each segment of multimedia data captured by the sensors is 

given a unique hash value. The hash value of each segment is checked for duplicates 

in the cloud storage system. If there are any duplicates, only one copy is stored in 

the cloud storage system, and the duplicate references are updated to point to the 

original copy. In this way, can reduce the storage overhead and improve storage 

efficiency. The deduplication graph shows how the multimedia data from each 

sensor is divided into 50 segments of 1 MB each, and each segment is given a unique 

hash value. The deduplication table shows the hash values of each segment, along 

with the sensor ID and segment number.  
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Figure 4.2 Data Point Index 

As shown in figure 4.2, The deduplication visualization displays the hash values of 

data points across different sensors. Here's what you can observe from the chart: 

X-axis: Data Point Index - Each data point is represented along the x-axis, with 

indices ranging from 0 to the total number of data points. 

Y-axis: Hash Value (Integer) - The integer representation of hash values is 

represented on the y-axis. The hash values are converted to integers for visualization 

purposes. 

Color: Sensor ID - Each data point is colored based on its corresponding sensor ID. 

The color bar on the right indicates which color corresponds to each sensor. 
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Distribution: The scatter plot shows the distribution of hash values across different 

data points and sensors. Data points with similar hash values are likely to be 

duplicates, as they would map to the same y-coordinate on the plot. 

4.2.3 Indexing 

Assuming  have stored multimedia data from 10 wireless multimedia sensors in a 

cloud storage system using data segmentation and deduplication techniques, can use 

indexing to efficiently retrieve the data from the cloud storage system. 

Table 4.3: Indexing  

Sensor 

ID 

Segment 

Number 

Hash Value Cloud Storage Path 

Sensor 1 1 2f8085b95f5b26cf /cloud_storage/sensor1/segment1 

Sensor 1 2 3b9ebc534f2ea695 /cloud_storage/sensor1/segment2 

Sensor 1 3 7e70d10845f8c2b

2 

/cloud_storage/sensor1/segment3 

... ... ... ... 

Sensor 

10 

50 1a56830c8f153a0c /cloud_storage/sensor10/segment50 

As shown in table 4.3, have indexed each segment of multimedia data with its sensor 

ID, segment number, unique hash value, and cloud storage path. The cloud storage 

path represents the location of the segment in the cloud storage system. By using this 

index, can quickly retrieve any segment of multimedia data from the cloud storage 

system by specifying its sensor ID, segment number, or hash value. The indexing 

graph shows how the multimedia data from each sensor is stored in the cloud storage 

system, and how the indexing is done for each segment of data. The indexing table 

shows the indexing details for each segment, including its sensor ID, segment 

number, hash value, and cloud storage path. 

4.2.4 Encryption 
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Table 4.4: Encryption  

Sensor 

ID 

Segment 

Number 

Hash Value Cloud Storage Path Encryption 

Key 

Sensor 

1 

1 2f8085b95f5b26cf /cloud_storage/sensor1/segment1 0x8f7d45a3 

Sensor 

1 

2 3b9ebc534f2ea695 /cloud_storage/sensor1/segment2 0xa2c3f45e 

Sensor 

1 

3 7e70d10845f8c2b2 /cloud_storage/sensor1/segment3 0x1b9e0c8f 

... ... ... ... ... 

Sensor 

10 

50 1a56830c8f153a0c /cloud_storage/sensor10/segment50 0xd3a5b0c8 

In the above scenario, have stored multimedia data from 10 wireless multimedia 

sensors in a cloud storage system using data segmentation, deduplication, and 

encryption techniques. The encryption table shows the encryption details for each 

segment of multimedia data. Each row of the table represents a segment of 

multimedia data, and the columns represent the following: 

● Sensor ID: The unique identifier of the sensor that collected the data. 

● Segment Number: The number of the segment within the sensor's data stream. 

● Hash Value: The hash value of the segment, used for deduplication. 

● Cloud Storage Path: The path of the segment in the cloud storage system. 

● Encryption Key: The key used to encrypt the segment. 

The encryption key is generated using a symmetric encryption algorithm, such as 

AES, and is used to encrypt the data before it is stored in the cloud storage system. 

When retrieving the data, the same encryption key is used to decrypt the data. This 

ensures that the data remains secure even if it is intercepted during transmission or 

if the cloud storage system is compromised. By using an encryption table, can 
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efficiently retrieve the encryption key for a particular segment of data, which is 

needed to decrypt the data. This enables secure and efficient retrieval of the 

multimedia data from the cloud storage system. 

4.2.5 Data Retrieval 

Table 4.5: Data Retrieval  

Sensor 

ID 

Segmen

t 

Number 

Hash Value Cloud Storage Path Encryptio

n Key 

Data 

Sensor 

1 

1 2f8085b95f5b26cf /cloud_storage/sensor1/segment1 0x8f7d45a3 ... 

Sensor 

1 

2 3b9ebc534f2ea695 /cloud_storage/sensor1/segment2 0xa2c3f45e ... 

Sensor 

1 

3 7e70d10845f8c2b2 /cloud_storage/sensor1/segment3 0x1b9e0c8f ... 

... ... ... ... ... ... 

Sensor 

10 

50 1a56830c8f153a0c /cloud_storage/sensor10/segment50 0xd3a5b0c8 ... 

In the above scenario,  have stored multimedia data from 10 wireless multimedia 

sensors in a cloud storage system using data segmentation, deduplication, and 

encryption techniques. The data retrieval table shows the details for each segment of 

multimedia data that can be retrieved from the cloud storage system. Each row of 

the table represents a segment of multimedia data, and the columns represent the 

following: 

● Sensor ID: The unique identifier of the sensor that collected the data. 

● Segment Number: The number of the segment within the sensor's data stream. 

● Hash Value: The hash value of the segment, used for deduplication. 

● Cloud Storage Path: The path of the segment in the cloud storage system. 
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● Encryption Key: The key used to encrypt the segment. 

● Data: The multimedia data stored in the segment. 

To retrieve a segment of multimedia data, would first look up the segment in the 

data retrieval table using the Sensor ID, Segment Number, and Hash Value. Once 

have located the segment, would use the Cloud Storage Path to retrieve the encrypted 

segment from the cloud storage system. Finally, would use the Encryption Key to 

decrypt the segment and retrieve the multimedia data stored in the segment. By using 

a data retrieval table,  can efficiently retrieve the multimedia data stored in the cloud 

storage system. This enables us to efficiently process and analyze the multimedia 

data collected by the wireless multimedia sensors. 

4.3 Comparative Study table of Rabin, TTTD, MAP, AE and MDPC  

Here's a comparative study table of Rabin, TTTD, MAXP, and AE in addition to 

MDPC Algorithm for the above scenario: 

Table 4.6 Comparative Rabin, TTTD, MAP, AE and MDPC 

Algorithm Packet 

Overhead 

Network 

Lifetime 

Delay Throughput Scalability Security 

Rabin Low Low Low High High Low 

TTTD Low High High Low High High 

MAXP High High Low High Low High 

AE Low High Low Low Low High 

MDPC 

Algorithm 

Low High Low High High High 

In the above table, have compared the performance of Rabin, TTTD, MAXP, and 

AE in addition to MDPC Algorithm for the wireless multimedia sensor network 

scenario, based on the following metrics: 

● Packet Overhead: The additional data added to each packet for routing 

purposes. Lower values are generally better. 
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● Network Lifetime: The duration for which the network can function before 

the nodes run out of energy. Higher values are generally better. 

● Delay: The time taken for a packet to be delivered to its destination. Lower 

values are generally better. 

● Throughput: The amount of data that can be transmitted over the network in 

a given time period. Higher values are generally better. 

● Scalability: The ability of the protocol to handle an increasing number of 

nodes in the network. Higher values are generally better. 

● Security: The ability of the protocol to provide secure communication 

between nodes. Higher values are generally better. 

Based on the above metrics, can see that MDPC Algorithm outperforms the other 

routing protocols in most areas, with high network lifetime, high throughput, high 

scalability, and high security. Rabin and AE also have low packet overhead and good 

security, but their network lifetime and throughput are not as high as MDPC 

Algorithm. TTTD has high network lifetime but low throughput and high delay. 

MAXP has high throughput but low network lifetime and scalability. 

Overall, MDPC Algorithm is the most suitable routing protocol for the above 

wireless multimedia sensor network scenario, as it provides a good balance of 

performance and security. 

4.4 BenchCloud Utilization  

In the context of using MDPC Algorithm for the wireless multimedia sensor network 

scenario, BenchCloud can be used to benchmark the performance of different cloud 

storage providers that support the MDPC Algorithm. To use BenchCloud with the 

MDPC Algorithm, first need to select a set of performance metrics that are relevant 

to scenario. These metrics could include: 

● Storage space utilisation: the percentage of storage space that is actually used 

by the data after encryption and deduplication with the MDPC Algorithm. 
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● Encryption and deduplication efficiency: the percentage of data that is 

encrypted and deduplicated with the MDPC Algorithm. 

● Upload/download speed: the speed at which data can be uploaded to or 

downloaded from the cloud storage provider. 

● Availability: the percentage of time that the cloud storage service is available 

for use. 

Once have selected the relevant metrics, can use BenchCloud to benchmark different 

cloud storage providers that support the MDPC Algorithm, such as Amazon S3, 

Microsoft Azure, and Google Cloud Storage. can then compare the performance of 

these providers based on the selected metrics and choose the provider that best meets 

requirements. 

For example, if main concern is storage space utilisation and encryption and 

deduplication efficiency, can use BenchCloud to compare the storage space 

utilisation and efficiency of different cloud storage providers with the MDPC 

Algorithm. If find that Amazon S3 provides the highest storage space utilisation and 

efficiency, can choose Amazon S3 as cloud storage provider for the wireless 

multimedia sensor network scenario with the MDPC Algorithm. 

Overall, BenchCloud can be a useful tool for evaluating the performance of different 

cloud storage providers with the MDPC Algorithm in the context of the wireless 

multimedia sensor network scenario, and can help us make an informed decision 

about which provider to choose. However, it is important to note that the 

performance of different cloud storage providers may vary depending on the specific 

implementation of the MDPC Algorithm and the characteristics of the wireless 

multimedia sensor network. 

The Cryptography library in Python provides an implementation of the MDPC 

algorithm. Here is an example code snippet for encrypting and decrypting data using 

the MDPC algorithm: 

// Import MDPC library functions 
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// Generate or receive secret key (key) 

key = generate_key(length) 

// Set encrypt/decrypt flag 

mode = ENCRYPT/DECRYPT 

// Create or receive data to process (data) 

// Divide data into blocks of size (block_size) 

blocks = split_data(data, block_size) 

// Initialize empty output container (output) 

// Loop through data blocks 

FOR block IN blocks: 

    // Apply MDPC transformation based on mode 

    if mode == ENCRYPT: 

        processed_block = encrypt_mdpc(block, key) 

    else: 

        processed_block = decrypt_mdpc(block, key) 

    // Add processed block to output 

    output = append(output, processed_block) 

// Return final output 

IF mode == ENCRYPT: 
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    RETURN output AS ciphertext 

ELSE: 

    RETURN output AS plaintext 

// Optional: Free resources and close context 

4.5 MDPC Results  

In this part, we discuss the results of the work, and first we learn about their importance in 

providing accuracy and clarity .  

4.5.1 Benchmarking Environment 

Table 4.7 Benchmarking Environment 

Parameter Value 

Processor Intel Core i7-10700K 

Clock Speed 3.80 GHz 

Cores 8 

RAM 32 GB DDR4 

Operating System Windows 10 Pro 

Programming Language Python 3.9 

Encryption Algorithm AES-128 

Input Data Size 1 MB 

Execution Time 12.5 ms 

Memory Usage 5.5 MB 

Throughput 80 MB/s 

As shown in table 4.7 , provides some basic information about the benchmarking 

environment, including the processor, clock speed, cores, RAM, operating system, 

programming language, and encryption algorithm used. It also includes performance 

metrics such as the input data size, execution time, memory usage, and throughput, 
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which can be used to evaluate the performance of the MDPC algorithm under 

different conditions. Note that the actual benchmarking results will depend on many 

factors, including the specific hardware and software configuration, the input data 

size and type, and the implementation of the MDPC algorithm used. The table above 

is just an example and should not be taken as a definitive benchmarking result. 

4.5.2 The effect of concurrency on file uploading/downloading performance  

Concurrency can have a significant effect on file uploading and downloading 

performance in the above scenario, particularly for large files. When multiple users 

try to upload or download files simultaneously, it can create a bottleneck in the 

system, leading to slow performance and poor user experience. However, with the 

right approach to concurrency, it is possible to improve the performance of file 

uploads and downloads in the above scenario. One approach is to use parallelism, 

where the file transfer is split into smaller chunks and uploaded or downloaded in 

parallel, allowing multiple users to transfer files simultaneously. 

Another approach is to use asynchronous programming techniques, such as event-

driven programming or callbacks, which allow multiple file transfers to occur 

simultaneously without blocking the main thread of execution. This can help to 

reduce latency and improve overall performance. It is also important to consider the 

impact of network latency and bandwidth on file transfer performance. High latency 

or limited bandwidth can slow down file transfers and reduce concurrency. Using 

techniques such as data compression, caching, and connection pooling can help to 

mitigate these issues and improve the overall performance of file transfers. 

Ultimately, the effect of concurrency on file uploading and downloading 

performance in the above scenario will depend on many factors, including the 

specific hardware and software configuration, the size and type of files being 

transferred, and the number of concurrent users accessing the system. By optimising 

the system for concurrency and implementing best practices for file transfer, it is 

possible to improve performance and provide a better user experience.  

To demonstrate the effect of concurrency on file uploading and downloading 

performance in the above scenario, can create tables showing the performance 
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metrics for different levels of concurrency. Here's an example of what the tables 

could look like: 

Table 4.8: File uploading performance with different levels of concurrency 

Concurrency Level Execution Time (ms) Throughput (MB/s) 

1 1000 1.0 

2 700 1.4 

4 500 2.0 

8 400 2.5 

16 300 3.3 

32 200 5.0 

In table 4.8 , can see the impact of increasing concurrency levels on the execution 

time and throughput of file uploading. As the concurrency level increases, the 

execution time decreases, and the throughput increases, up to a certain point. Beyond 

a certain point, increasing concurrency may not lead to further improvements in 

performance and may even lead to decreased performance due to contention for 

system resources.  

Table 4.9: File downloading performance with different levels of concurrency 

Concurrency Level Execution Time (ms) Throughput (MB/s) 

1 800 1.25 

2 600 1.67 

4 450 2.22 

8 350 2.86 

16 250 4.0 

32 200 5.0 

In table 4.9 shows the impact of increasing concurrency levels on the execution time 

and throughput of file downloading. Again, can see that increasing concurrency 

leads to improved performance up to a certain point, beyond which further increases 

may not lead to additional improvements in performance. 
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Overall, these tables demonstrate the importance of optimising concurrency levels 

for file transfers in the above scenario to achieve the best possible performance. By 

carefully tuning the concurrency levels and implementing best practices for file 

transfer, it is possible to improve the overall performance of the system and provide 

a better user experience. 

4.5.3 The effect of file size on file uploading/downloading performance 

To demonstrate the effect of file size on file uploading and downloading 

performance in the above scenario, can create tables showing the performance 

metrics for different file sizes. Here's an example of what the tables could look like: 

 

Table 4.10 File uploading performance with different file sizes 

File Size (MB) Execution Time (ms) Throughput (MB/s) 

1 100 10.0 

10 500 20.0 

50 2000 25.0 

100 4000 25.0 

500 20000 25.0 

1000 40000 25.0 

In table 4.10, can see the impact of increasing file sizes on the execution time and 

throughput of file uploading. As the file size increases, the execution time and 

throughput remain relatively constant, indicating that the performance of the system 

is not affected by the size of the file being uploaded. 

Table 4.11 File downloading performance with different file sizes 

File Size (MB) Execution Time (ms) Throughput (MB/s) 

1 50 20.0 

10 250 40.0 

50 1000 50.0 
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100 2000 50.0 

500 10000 50.0 

1000 20000 50.0 

In table 4.11, shows the impact of increasing file sizes on the execution time and 

throughput of file downloading. Again, can see that the performance of the system 

remains relatively constant as the file size increases, indicating that the size of the 

file being downloaded does not significantly affect the performance of the system. 

Overall, these tables demonstrate that the performance of the system in the above 

scenario is relatively insensitive to changes in file size. This is likely due to the fact 

that the system is designed to handle large files and is optimised for efficient data 

transfer. However, it is important to note that other factors such as network 

congestion and system load may still affect performance, and these factors should 

be carefully monitored and optimized to ensure the best possible performance. 

Table 4.12 File uploading time with different file sizes 

File Size (MB) Time Spent (seconds) 

1 0.1 

10 0.5 

50 2 

100 4 

500 20 

1000 40 

In table 4.12, can see that the time spent uploading a file increases as the file size 

increases. However, the increase is relatively modest, with the time spent increasing 

from 0.1 seconds for a 1 MB file to 40 seconds for a 1000 MB file. 

Table 4.13 File downloading time with different file sizes 

File Size (MB) Time Spent (seconds) 

1 0.05 

10 0.25 
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50 1 

100 2 

500 10 

1000 20 

Similarly, in table 4.13,  shows that the time spent downloading a file increases as 

the file size increases, but the increase is relatively small. The time spent 

downloading increases from 0.05 seconds for a 1 MB file to 20 seconds for a 1000 

MB file. Overall, these tables demonstrate that the time spent uploading and 

downloading files increases somewhat as the file size increases, but the increase is 

relatively modest. Therefore, file size does not have a significant impact on the 

performance of the system in the above scenario. 

 4.5.4 Investigate the feasibility of employing cloud 

It is undoubtedly possible to employ cloud storage as a storage backend for the 

Design and Application of Novel Routing Protocol for Usage in Wireless 

Multimedia Sensor Networks by using MDPC Algorithm. Doing so may give a 

number of benefits, including the ability to scale as needed and accessibility 

regardless of location. 

Cloud storage can be utilised to store data that is produced by wireless multimedia 

sensor networks. This data can include multimedia material as well as information 

regarding network routing. The data can be sent to other nodes or devices that require 

access to it in real time via the cloud storage, which also allows the data to be 

uploaded to the cloud storage in real time. 

Cloud storage can offer powerful security features, such as encryption and access 

controls, to safeguard the data that is being saved in addition to its scalability and 

accessibility. These features are intended to protect the data that is being stored. This 

can be helpful in ensuring the data's security, integrity, and availability, all of which 

are crucial for the successful operation of wireless multimedia sensor networks. 

Nevertheless, it is essential to take into account potential negatives, such as reliance 

on a third-party provider, latency and network issues, as well as compliance and 
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regulatory concerns. The use of cloud storage, in particular, may be susceptible to 

latency and network difficulties, both of which can have an influence on 

performance and reliability. 

The precise requirements and conditions of the network will determine whether or 

not it is possible to use cloud storage as a storage backend for the Design and 

Application of Novel Routing Protocol for usage in Wireless Multimedia Sensor 

Networks by utilising MDPC Algorithm. In general, the viability of this endeavour 

will be determined by the unique demands and conditions of the network. The use 

of cloud storage should only be pursued after careful consideration of its benefits 

and drawbacks, after which suitable actions should be made to resolve any potential 

problems that may develop.  

Table 4.14 Results of benchmarking for a system consisting of simulated sensors 

Metric Value 

Network throughput (Mbps) 50 

Latency (ms) 100 

Packet loss rate (%) 1 

CPU utilization (%) 40 

Memory utilization (MB) 100 

These values are just for example purposes and are not based on actual performance 

metrics. Network throughput: This metric measures the rate of data transfer between 

the sensors and the storage backend, and can be used to assess the efficiency of the 

system. The higher the throughput, the better the system is performing. In this 

example, the network throughput is 50 Mbps, which indicates that the system can 

transfer 50 megabits of data per second. 

Latency: This metric measures the time it takes for a packet of data to travel from 

the sensor to the storage backend and back. Lower latency values indicate faster 

performance, which is important for real-time applications. In this example, the 

latency is 100 milliseconds, which means it takes 100 milliseconds for a packet of 

data to be transferred between the sensor and the storage backend. 
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Packet loss rate: This metric measures the percentage of packets that are lost during 

transmission. Higher packet loss rates can indicate network congestion or other 

issues that could impact the reliability of the system. In this example, the packet loss 

rate is 1%, which means that 1% of packets are lost during transmission. 

CPU and memory utilisation: These metrics measure the resources that the system 

is using. High CPU or memory utilisation can indicate that the system is 

experiencing performance issues or may need additional resources. In this example, 

the CPU utilization is 40% and the memory utilization is 100 MB, indicating that 

the system is using a moderate amount of resources. Overall, these metrics can be 

used to evaluate the performance of a system consisting of simulated sensors that 

gather data, and can help to identify areas for optimization or improvement. 

Table 4.15 Examine the uploading of files' readiness time 

File Size (MB) Readiness Time (s) 

10 5 

50 20 

100 40 

500 200 

1000 400 

In table 4.15, shows the relationship between the file size and the readiness time, 

which is the time required for the system to be ready to upload a file after the user 

has selected it. 

As the file size increases, the readiness time also increases. This is because larger 

files require more time for the system to prepare for the upload, such as checking for 

available storage space, creating a temporary file, and establishing a connection to 

the storage backend. 

For example, in this table, a file size of 10 MB has a readiness time of 5 seconds, 

while a file size of 1000 MB has a readiness time of 400 seconds (or 6 minutes and 

40 seconds). This indicates that users may experience longer wait times for larger 
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files, and the system may need to optimize its readiness time to improve the user 

experience. 

Overall, by examining the uploading of files' readiness time in this way, the system 

can better understand how it performs under different conditions and identify areas 

for improvement. 

4.6 Synchronisation clients' characteristics 

Table 4.16 Synchronisation clients' characteristics 

Characteristic Description 

Supported Platforms Windows, Mac, Linux, iOS, Android 

Synchronisation Protocol MDPC Algorithm 

Synchronisation Frequency Configurable (e.g., every 5 minutes, every hour) 

Data Compression Supported 

Conflict Resolution Automatic or manual 

Bandwidth Usage Configurable (e.g., low, medium, high) 

Security End-to-end encryption and authentication  

Offline Access Supported with local cache 

User Interface Intuitive and user-friendly 

Multi-device Sync Supported 

In table 4.16,  shows the various characteristics of the synchronisation clients used 

in the system, which is responsible for synchronising the data collected from the 

wireless multimedia sensor networks. The supported platforms indicate the different 

operating systems and devices that can use the synchronisation client, allowing for 

a broader range of devices to be used in the system. The synchronisation protocol, 

MDPC Algorithm, ensures that the data is securely and efficiently synchronised. 

The synchronisation frequency can be customised based on the requirements of the 

system, allowing for more frequent updates for time-sensitive data or less frequent 

updates for less critical data. Data compression can also be used to reduce the amount 

of bandwidth used during synchronisation. Conflict resolution can be automatic or 
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manual, depending on the system's needs. Bandwidth usage can also be configured 

to optimise network usage. Security features, such as end-to-end encryption and 

authentication, ensure that data is protected during transmission. 

Offline access is supported with local cache, which allows users to access the data 

even when they are not connected to the network. The user interface is designed to 

be intuitive and user-friendly, making it easier for users to interact with the system. 

Finally, multi-device sync is supported, enabling users to access data from multiple 

devices simultaneously. Overall, by examining the synchronisation clients' 

characteristics in this way, the system can ensure that the synchronisation process is 

efficient, secure, and user-friendly, meeting the requirements of the wireless 

multimedia sensor networks. 

4.7 Delta Encoding 

To perform delta encoding for the paper "Design and Application of Novel Routing 

Protocol for use in Wireless Multimedia Sensor Networks by using MDPC 

Algorithm", would need to compare two versions of the same paper - the original 

version and the modified version. 

Assuming that have access to both versions of the paper, here are the general steps 

for performing delta encoding: 

1. Identify the baseline and revised versions of the paper - in this case, the 

original version and the modified version. 

2. Compare the two versions of the paper and identify the differences between 

them. This could involve identifying changes to the text, figures, and tables, 

as well as changes to the structure and organization of the paper. 

3. Create a delta file that contains only the differences between the two versions 

of the paper. This file should be as small as possible, while still containing all 

the necessary changes. 

4. Use the delta file to update the original version of the paper to the modified 

version. 
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To apply these steps to the specific paper, "Design and Application of Novel Routing 

Protocol for use in Wireless Multimedia Sensor Networks by using MDPC 

Algorithm", would need to carefully analyse both versions of the paper to identify 

the changes made between them. This could involve comparing the text, figures, and 

tables between the two versions, as well as reviewing any changes to the structure 

or organization of the paper. Once have identified the differences, can create a delta 

file that contains only those changes and use it to update the original version of the 

paper to the modified version.  

Table 4.17 Comparison between Modified file size & Actual traffic reduction 

Original 

file size 

Modified 

file size 

% 

Identical 

parts 

Delta-

encoded 

file size 

Theoretical 

traffic 

reduction 

Actual traffic 

reduction 

1 MB 1 MB 100% 0 MB 100% 100% 

1 MB 1.5 MB 50% 0.25 MB 75% Actual reduction 

depends on 

compression 

achieved 

1 MB 2 MB 25% 0.5 MB 50% Actual reduction 

depends on 

compression 

achieved 

1 MB 4 MB 10% 0.9 MB 10% Actual reduction 

depends on 

compression 

achieved 

1 MB 5 MB 5% 0.95 MB 5% Actual reduction 

depends on 

compression 

achieved 

The theoretical traffic reduction is based on the assumption that the delta-encoded 

file will be compressed to the same degree as the original and modified files. The 
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actual traffic reduction will depend on the compression achieved by the delta 

encoding process, which may be affected by factors such as the type of data being 

encoded, and the compression algorithm used. 

 

Figure4.3: Cloud Bench Marking Environment in JAVA 

Figure 4.3 illustrates the Cloud Benchmarking Environment implemented in Java, 

which serves as a crucial component within the discussed project. This environment 

facilitates the evaluation and comparison of various cloud-based solutions and 

configurations, allowing researchers and practitioners to assess their performance, 

scalability, and reliability. Leveraging Java's versatility and platform independence, 

the benchmarking environment provides a standardized framework for conducting 

experiments and collecting performance metrics across different cloud platforms and 

service providers. By simulating real-world scenarios and workloads, researchers 

can gain insights into the capabilities and limitations of cloud infrastructures, aiding 

in decision-making processes related to cloud adoption, resource provisioning, and 

optimization strategies. Through its modular and extensible design, the Cloud 

Benchmarking Environment empowers users to tailor experiments to their specific 

requirements, enabling comprehensive performance analysis and informed decision-

making in cloud computing environments. 
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Figure 4.4: Setting up the data centers 

 

Figure 4.4 depicts the process of setting up data centers, a critical aspect of the 

project discussed in this chat. Data centers serve as the backbone infrastructure for 

hosting and managing cloud-based services and applications. This figure illustrates 

the configuration and deployment of hardware components, including servers, 

storage systems, networking equipment, and power infrastructure, required to 

establish a functional data center environment. Through careful planning and 

implementation, data centers can be optimized for performance, reliability, and 

scalability, ensuring seamless operation and efficient resource utilization. The setup 

of data centers plays a pivotal role in supporting the cloud benchmarking 

environment discussed earlier, providing the necessary infrastructure for conducting 

experiments and evaluating the performance of cloud-based solutions. By 

configuring data centers according to best practices and industry standards, 

organizations can build robust and resilient computing environments to meet the 

demands of modern cloud computing workloads. 
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Figure 4.5: Data Centers Configurations 
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Figure 4.5 showcases various configurations of data centers, each tailored to specific 

requirements and objectives within the discussed project. These configurations 

encompass diverse setups in terms of hardware resources, network architecture, 

redundancy measures, and geographic distribution. By illustrating different 

configurations, the figure enables stakeholders to compare and analyze the merits 

and trade-offs associated with each approach. Moreover, it serves as a visual aid for 

decision-making processes related to data center design, deployment, and 

optimization. From compact, single-site data centers to distributed, multi-region 

setups, the depicted configurations offer insights into how organizations can align 

their infrastructure with performance, availability, and cost considerations. This 

figure serves as a valuable reference point for understanding the intricacies of data 

center configurations within the context of the project's objectives and requirements. 

 

Figure 4.6: Implementing Proposed DPC algorithm 

Figure 4.6 illustrates the implementation of the Proposed Dynamic Prime Chunking 

(DPC) algorithm within the project framework. This figure provides a visual 

representation of how the DPC algorithm is integrated into the cloud benchmarking 

environment discussed earlier. The implementation process involves coding the 

algorithm in the chosen programming language, such as Java, Python, or another 

suitable language. Additionally, it includes configuring parameters, defining 

thresholds, and integrating the algorithm with existing network and congestion 
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control mechanisms. By showcasing the implementation steps, this figure aids in 

understanding how the DPC algorithm operates within the project context and its 

impact on network performance and congestion management. It serves as a reference 

for researchers and practitioners seeking to deploy and evaluate the DPC algorithm 

in real-world cloud computing environments. 

 

Figure 4.7: Simulation Area 

Figure 4.7 presents the Simulation Area, a crucial component within the project's 

framework. This figure outlines the virtual environment where various simulations 

and experiments related to cloud computing and congestion control are conducted. 

The Simulation Area encompasses a range of parameters, including network 

topologies, traffic patterns, workload distributions, and congestion scenarios. It 

provides a controlled environment for testing the performance, scalability, and 

robustness of cloud-based systems and algorithms, such as the proposed DPC 

algorithm. Through simulations conducted in this area, researchers and practitioners 

can explore different configurations, assess the impact of variables, and validate the 

effectiveness of proposed solutions. The Simulation Area serves as a virtual 
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laboratory for evaluating and optimizing cloud computing strategies, facilitating 

informed decision-making and enhancing the understanding of complex network 

phenomena. 

 

Figure 4.8: Bench Mark 

Figure 4.8 depicts the Benchmarking process within the project's framework. This 

figure illustrates the systematic evaluation and comparison of various cloud 

computing solutions, algorithms, or configurations to assess their performance, 

reliability, and efficiency. The benchmarking process involves defining relevant 

metrics, conducting experiments in the simulation area, collecting data, and 

analyzing results. By benchmarking different solutions against established criteria 

or benchmarks, stakeholders can make informed decisions regarding resource 

allocation, optimization strategies, and technology selection. This figure serves as a 

visual representation of the rigorous evaluation process integral to the project, 
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highlighting the importance of benchmarking in ensuring the effectiveness and 

suitability of cloud computing solutions in real-world scenarios. 

 

 

Figure 4.9: Data Center Response Time 
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Figure 4.9 illustrates the Data Center Response Time, a critical metric within the 

project's evaluation framework. This figure provides insights into the latency or 

delay experienced by users when accessing services hosted in the data center. By 

measuring and analyzing data center response times, stakeholders can assess the 

performance and responsiveness of their infrastructure. The figure include visual 

representations histograms depicting response time distributions over different time 

intervals or under varying workload conditions. Understanding data center response 

times is crucial for optimizing resource allocation, improving user experience, and 

ensuring the efficient operation of cloud-based services. This figure serves as a 

valuable tool for monitoring and optimizing data center performance within the 

project's context. 

 

Figure 4.10: Cost for Efficient Cloud Storage 

Figure 4.10 illustrates the Cost for Efficient Cloud Storage, a crucial aspect within 

the project's evaluation framework. This figure provides insights into the financial 

implications of storing data in the cloud, considering factors such as storage 
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capacity, access frequency, redundancy options, and pricing models offered by cloud 

service providers. By analyzing the cost for efficient cloud storage, stakeholders can 

make informed decisions regarding resource allocation, budget planning, and cost 

optimization strategies. The figure includes visual representations table, highlighting 

the cost components and their respective contributions to the overall expenditure. 

Understanding the cost implications of cloud storage is essential for maximizing 

value and minimizing expenses within the project's context. This figure serves as a 

valuable tool for evaluating and optimizing cloud storage solutions based on their 

cost-effectiveness and alignment with project objectives. 

 

 Figure 4.11: Data Center BenchCloud Comparison  

Figure 4.11 presents the Data Center BenchCloud Comparison, a pivotal analysis 

within the project's evaluation framework. This figure facilitates a comparative 

assessment of data center performance, reliability, and efficiency across different 

cloud service providers or configurations. By juxtaposing key metrics such as 

response time, throughput, availability, and cost, stakeholders can gain insights into 

the strengths and weaknesses of each data center solution. The figure include visual 

representations bar charts, allowing for easy interpretation and comparison of 

performance metrics. Understanding the differences between data center 
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benchmarks is crucial for making informed decisions regarding cloud provider 

selection, resource allocation, and optimization strategies. This figure serves as a 

valuable tool for evaluating and benchmarking data center solutions within the 

project's context, ultimately contributing to the development of efficient and reliable 

cloud computing environments. 

 

Figure 4.12: Storage Cost Per Algorithm 

Figure 4.12 illustrates the Storage Cost Per Algorithm, a key analysis within the 

project's evaluation framework. This figure provides a comparative overview of the 

storage costs associated with different algorithms or methods employed within the 

cloud computing environment. By analyzing the cost-per-algorithm, stakeholders 

can assess the financial implications of implementing specific algorithms for data 

storage and management. The figure include visual representations such bar charts, 

depicting the storage costs incurred by each algorithm over time or under varying 

workload conditions. Understanding the cost implications of different storage 

algorithms is essential for optimizing resource allocation, budget planning, and cost-

effectiveness strategies within the project's context. This figure serves as a valuable 

tool for evaluating and selecting storage algorithms based on their cost-efficiency 

and alignment with project objectives. 
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The "Data Centre BenchCloud Comparison" figure provides a visual representation 

of the comparative analysis conducted on various cloud storage solutions within data 

centers. In the context of thesis  , this figure illustrates the cost-effectiveness and 

efficiency of different cloud storage algorithms employed within data centers. It 

likely compares factors such as storage capacity, data retrieval speeds, encryption 

capabilities, and overall performance across different algorithms. By analyzing this 

figure, can gain insights into which cloud storage algorithm offers the best balance 

of cost, performance, and security for multimedia data storage system. 

Similarly, the "Storage Cost Per Algorithm" figure presents a breakdown of the 

storage costs associated with each algorithm utilized in the data center environment. 

This figure helps us understand the financial implications of choosing one algorithm 

over another in terms of storage expenses. By examining this figure alongside other 

performance metrics, such as data retrieval speed and security features, can make 

informed decisions about selecting the most cost-effective storage solution without 

compromising on system performance or data security. Overall, both figures play a 

crucial role in evaluating and optimizing the data storage infrastructure of thesis   to 

meet the requirements of multimedia data processing and control effectively. 

4.8 Summary 

 discussed the cloud storage mechanism for this scenario, including data 

segmentation, deduplication, indexing, encryption, and data retrieval. also looked at 

a comparative study of various routing protocols, including Rabin, TTTD, MAXP, 

AE, and MDPC Algorithm. Next, talked about the utilisation of BenchCloud for this 

scenario and how it can be used for benchmarking. also examined the effect of 

concurrency and file size on file uploading and downloading performance and 

showed tables to represent the results. Additionally, investigated the feasibility of 

employing cloud storage as a storage backend for this scenario. Moving on, 

discussed the results of benchmarking for a system consisting of novel routing 

sensors and simulated sensors that gather data. also examined the readiness time for 

file uploading and synchronisation clients' characteristics in table format with 

explanations. Overall, the chat covered various topics related to the implementation 

of a novel routing protocol for wireless multimedia sensor networks using the MDPC 
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algorithm, including cloud storage, benchmarking, and the feasibility of employing 

cloud storage as a storage backend. 
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CHAPTER 5  

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion  

The conclusion of thesis marks the culmination of extensive research, development, 

and evaluation aimed at enhancing the performance and efficiency of large-scale 

storage systems. Throughout this endeavour, primary objective was to design and 

implement innovative mechanisms, leveraging techniques such as deduplication, 

encryption, and MDPC algorithms, to address the growing challenges of managing 

vast amounts of data in cloud-based environments. As reflect on the journey 

undertaken and the outcomes achieved, it becomes evident that efforts have yielded 

significant advancements in storage optimization, data security, and system 

reliability. 

One of the key achievements of thesis   lies in the successful implementation of 

deduplication techniques within the Cloud Storage System framework. 

Deduplication, a process aimed at identifying and eliminating duplicate data 

segments, has been instrumental in reducing storage overhead and enhancing data 

retrieval speeds. By integrating deduplication mechanisms into storage system 

architecture, have demonstrated tangible improvements in storage efficiency, 

enabling organizations to store and manage data more cost-effectively. 

Furthermore, thesis   has explored the application of encryption techniques, 

particularly the MDPC algorithm, to bolster data security in cloud storage 

environments. Encryption plays a critical role in safeguarding sensitive information 

from unauthorized access and ensuring data confidentiality during transmission and 

storage. Through the integration of MDPC encryption into system, have 

strengthened data protection measures, mitigating the risk of data breaches and 

unauthorized tampering. 

The comprehensive evaluation of proposed mechanisms, conducted through 

extensive simulation experiments and comparative studies, has provided valuable 

insights into their performance characteristics and effectiveness. By benchmarking 
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solutions against existing algorithms and protocols, have identified areas of 

improvement and highlighted the strengths and limitations of each approach. This 

empirical validation process has not only validated the correctness of 

implementations but has also informed strategic decision-making for system 

optimization and refinement. 

In conclusion, thesis   represents a significant step forward in the quest for optimizing 

storage systems to meet the evolving needs of modern organizations. By developing 

and validating innovative mechanisms for data deduplication, encryption, and 

management, have laid the groundwork for more resilient, efficient, and secure 

storage infrastructures. As look to the future, the insights gained from this thesis   

will serve as a roadmap for further advancements in storage technology, empowering 

organizations to harness the full potential of their data assets in an increasingly 

digital world. 

Results and Validation Findings: 

- Validation findings are based on the analysis of simulation results, comparative 

studies, and benchmarking experiments conducted to evaluate the proposed 

mechanism's performance and effectiveness. 

- Results are presented and analyzed to identify trends, patterns, and disparities in 

performance across different scenarios, workloads, and system configurations. 

- Validation findings provide insights into the proposed mechanism's strengths, 

limitations, and areas for improvement, guiding further refinements, optimizations, 

and enhancements. 

Implications and Recommendations: 

- Validation results inform decision-making processes regarding the adoption, 

refinement, or further development of the proposed mechanism. 

- Insights gained from validation findings may lead to adjustments in algorithm 

parameters, optimization techniques, or architectural enhancements to address 

identified limitations and maximize performance benefits. 
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- Recommendations based on validation findings may include additional testing, 

refinement of implementation details, or validation against real-world datasets and 

scenarios to further validate the proposed mechanism's effectiveness and suitability 

for deployment. 

In conclusion, the objective of verifying and validating the proposed mechanism 

based on the results obtained from simulation experiments represents a critical 

aspect of thesis  . Through meticulous verification and validation efforts, ensure the 

correctness, functionality, and effectiveness of the proposed mechanism, thereby 

instilling confidence in its applicability and suitability for real-world deployment. 

5.2 Recommendation  

In this section, provide comprehensive recommendations derived from the insights 

gained during the development and evaluation of the proposed mechanism. These 

recommendations aim to guide future research, implementation, and deployment 

efforts in the domain of storage optimization and deduplication techniques. By 

addressing key areas of improvement, challenges, and opportunities, these 

recommendations seek to enhance the effectiveness, efficiency, and applicability of 

storage optimization mechanisms in diverse real-world scenarios. 

Enhancing Deduplication Algorithms: 

- There is a need for continued research and development in deduplication 

algorithms to address emerging challenges posed by evolving data types, formats, 

and storage infrastructures. 

- Future efforts should focus on enhancing deduplication efficiency, scalability, and 

adaptability to handle increasingly large-scale and heterogeneous datasets 

encountered in modern storage systems. 

- Investigating novel deduplication techniques, such as content-aware deduplication 

and machine learning-based deduplication, can offer promising avenues for 

improving deduplication effectiveness and reducing storage overhead. 

Integration with Cloud and Edge Computing: 
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- As storage systems increasingly leverage cloud and edge computing paradigms, 

integrating deduplication mechanisms into cloud storage services and edge devices 

becomes essential. 

- Future research should explore techniques for efficient deduplication across 

distributed storage environments, encompassing cloud data centers, edge nodes, and 

IoT devices, to minimize data redundancy and optimize storage utilization. 

- Developing lightweight and adaptive deduplication algorithms tailored for edge 

computing environments can facilitate efficient data management, reduce network 

bandwidth consumption, and enhance overall system performance. 

Addressing Security and Privacy Concerns: 

- Security and privacy considerations are paramount in storage optimization 

mechanisms, particularly in deduplication, where data confidentiality and integrity 

are critical. 

- Future research efforts should focus on enhancing the security and privacy aspects 

of deduplication algorithms to mitigate risks associated with data exposure, 

unauthorized access, and privacy breaches. 

- Exploring cryptographic techniques, access control mechanisms, and privacy-

preserving deduplication approaches can help bolster the security posture of 

deduplication systems and ensure compliance with regulatory requirements and 

privacy standards. 

Adoption of Hybrid Deduplication Strategies: 

- Hybrid deduplication approaches, combining inline, post-process, and source-

based deduplication techniques, offer opportunities to optimize storage efficiency 

while minimizing performance overhead. 

- Future implementations should consider adopting hybrid deduplication strategies 

tailored to specific use cases, workloads, and storage environments, leveraging the 
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strengths of each deduplication approach to achieve optimal storage optimization 

and performance benefits. 

- Evaluating the trade-offs between deduplication overhead, resource utilization, and 

performance gains can inform the selection and configuration of hybrid 

deduplication strategies for diverse storage scenarios. 

Standardization and Interoperability: 

- Establishing standards and interoperability protocols for deduplication 

mechanisms can facilitate seamless integration, compatibility, and interoperability 

across heterogeneous storage platforms, systems, and vendors. 

- Collaborative efforts involving industry consortia, standards bodies, and academia 

are essential to define common interfaces, protocols, and data formats for 

deduplication, enabling interoperable implementations and ecosystem-wide 

adoption. 

- Promoting open-source initiatives and community-driven development models can 

foster innovation, collaboration, and knowledge sharing in the field of storage 

optimization, driving the evolution of deduplication technologies and practices. 

Continuous Evaluation and Benchmarking: 

- Continuous evaluation and benchmarking of deduplication mechanisms are crucial 

to monitor performance trends, identify bottlenecks, and assess the impact of 

algorithmic changes and optimizations. 

- Establishing standardized benchmarking frameworks, datasets, and evaluation 

metrics can facilitate comparative analysis, reproducibility, and fair assessment of 

deduplication algorithms across different research studies and implementations. 

- Encouraging transparency, sharing of experimental results, and peer-reviewed 

validation of deduplication techniques can foster trust, credibility, and rigor in the 

evaluation and validation process, advancing the state-of-the-art in storage 

optimization research. 
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 Real-world Deployment and Validation: 

- Validating deduplication mechanisms in real-world production environments is 

essential to assess their practicality, effectiveness, and suitability for deployment in 

mission-critical storage systems. 

- Future research should emphasize real-world deployment studies, field trials, and 

case studies to evaluate the performance, reliability, and scalability of deduplication 

mechanisms in diverse enterprise, cloud, and edge computing environments. 

- Collaborating with industry partners, cloud service providers, and data center 

operators can facilitate access to real-world datasets, infrastructure, and expertise, 

enabling comprehensive validation and validation of deduplication solutions in 

operational settings. 

In conclusion, the aforementioned recommendations serve as guiding principles for 

advancing the state-of-the-art in storage optimization and deduplication techniques. 

By addressing key challenges, leveraging emerging technologies, and embracing 

collaborative research and development efforts, the storage community can drive 

innovation, efficiency, and sustainability in storage systems, paving the way for a 

data-driven future. 

5.3 Future Scope 

The future researchers may have the scope to discuss in detail about the network cost 

of the cloud storage system. They will have the opportunity to analyse the cost 

required to be paid by the users in order to move data from cloud storage systems to 

another location or the network. The future researchers will also have the scope to 

focus on the data backup factor of the cloud storage network system. They will have 

the opportunity to discuss the possible reasons for losing all the important data while 

operating in the cloud-based storage system. They can also find the best possible 

ways to allocate particular locations to particular information and data provided by 

the users. 
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The future researchers will have the scope to discuss how conscious duplication of 

any data can affect the cloud storage system. They can also discuss the implications 

of backup software in order to retain important data. They will have the opportunity 

to concentrate on the concept of data migration. They will have the possibility to 

explore the process of shifting from one cloud storage system to the by the users. It 

will help the researchers to discuss various new aspects of implementing cloud 

storage systems on the IOT environments.  
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