Efficient Cloud Storage Mechanism for
IoT Environment

ABSTRACT

201%“,& esis aims to address the pressing need for efficient and secure Tﬁgg&’pﬁm
of multimedia data in today's digital landscape. Motivated by the growing volume

and importance of multimedia data, the thesis endeavors to develop a
comprehensive multimedia data management system. The primary problem
addressed is the challenge of ensuring efficient storage and retrieval while
maintaining data integrity and security in cloud storage environments.

Methodologically, the thesis leverages various techniques, including data retrieval,
encryption, deduplication, and performance simulation, to tackle this challenge
comprehensively. Data retrieval is facilitated through a robust mechanism designed
to efficiently access multimedia data stored in cloud storage systems. By employing
structured tables and utilizing identifiers, segment numbers, and hash values, data
retrieval ensures both integrity and efficiency.

Security is a paramount concern, and to address it, the system employs symmetric
encryption techniques such as the Advanced Encryption Standard (AES). Each
multimedia segment undergoes encryption using a unigque encryption key, ensuring
confidentiality during storage and transmission, thereby safeguarding against
unauthorized access and potential data breaches.

Furthermore, storage redundancy is minimized, and resource utilization optimized
through deduplication techniques. By maintaining a hash table and identifying
duplicate multimedia segments, the system conserves storage space and enhances
overall efficiency, reducing the risk of data inconsistency.

The thesis also includes simulations for file transfer times and throughput,
considering various file sizes and concurrency levels. These simulations provide
valuable insights into system performance under diverse conditions, enabling
informed decision-making and optimization strategies.

Through the integration of key generation, block processing, and MDPC algorithm
implementation, the multimedia data management system offers enhanced
functionality and performance. Overall, this research yields a comprehensive
solution for the efficient, secure, and optimized handling of multimedia data in cloud
storage environments.

TABLE OF CONTENT

A B ST R A CT ettt ekttt e b et a bt e bt et e e bt e b e e bt et e e nheeebeenreeenne e 1
LIST OF FIGURES ...ttt e e snn e re e 7
LIST OF TABLES. ...ttt et b et e e be e e sbe e sbeeebeesaneanneens 9
CHAPTER-L ...ttt b et b e s b e e b e e s re e e s beeenn e e nbe e e nn e e nne e 2
INTRODUGTION ..ttt bttt st e et e et e e s be et e e s be e e nbeenreeenes 2
1.1 INEFOTUCTION ...ttt bttt 2
1.2 Cloud Storage MEeChaNISIM..........ccueiiiiiiicieese et 3
1.3 LITEIATUIE SUIVBYveieieeeti ittt bbbttt ettt ab et 5
I oL T o 0] (0] o] [T o PSSR 16
1.5 RESEAICN ODJECLIVES......ccuiitiitiiiieiieiieieie ettt bbbttt sb bbb eneas 17
1.6 Contribution of the RESEAICH ..o 18
1.7 significance Of the rESEAICH..........oiii e 18
1.8 OULHNES OF THESIS ...ttt bbb sne s 19
CHAPTER — 2 ..ottt h et ekttt e s he e et e e e be e et e e saeeanbeenbneanneen 21
THEORETICAL BACKGROUNDcoiiiiiiiiie ettt neas 21
2.2 Data DEUPIICALIONeeiiiiciie ettt st et s re e sbeeabeesreeereea 22

2.2.1 Methods of Data DedupliCatiONcceiiiiiiiiiiniee e 26

2.2.3 PrOCESS OF DA ...ttt e et ettt et e e e e e e e e et e e e e e e e e e eaaaens 34

2.3 Purpose of Data DedupliCatIONccoviiiiiiiiiiiiieeeeee s 36
W O [0 0T T I Lo To] 4 1 T o ISR 38
2.5 HASN VAIUE (HV) ..ottt ns 40
2.6 Dynamic Prime ChUNKING.........coiiiiiieieeesee et 42
2.6.1 Dynamic Prime Chunking DeSIgNcccviiieiieiieie et 42
2.6.2 WOIKFIOW OF DPC ...t 44

2.7 Content Defined Chunking (CDC) AIgOrithmscccocve e 45
2.9 Secure Hash AlGOTTtNMcooiiiiiice e 50
2.9.1 SHA — Lttt e e r e nn e 52
2.9.2 SHAGELZ ...t 53
CHAPTER — 3 ettt ettt h et e sttt e bt esbe e e nb e e e beeenbeesneeenbeesbeeenteens 59
PropoSed IMECNANISITI.......ccuiiiiieic ettt e st e e teese e s beebeeaeesbeesreeneesneenreas 59
B L INEFOUUCTION ...ttt bbbt b ettt nb e bbb enes 59
3.4 The PropoSed SYSEM......cuiiieiieie ettt sttt et sbaen e ra e beeneeeneenras 63
3.5 SIMUIATION USBU.......coiiiieieie bbbttt bbb 67

3.6 MDPC AlQOItNm.....coiiiiiiicce et 69
3.6.1 Mathmitcal MOGEIccooiiiii e 69

3.6.2 Properties MDPC algorithmccooiiiiiiiiiiiiee e 70

3.6.3 Key properties when use MDPC in 10T environmentcccoocvvveeieeiesiesecsieennns 72

3.7 Enhanced Congestion Control MechaniSm...........ccccoiiiiiiiiiiiie 76

3.8 Analysing the MDPC's behaviour for the CDC'S.........cccoeveieiieiicce e 78

3.9 TheoretiCal COMPAIISONoiiiiiieieieit et 80
3.10 SHA -1 - Method Used to Eliminates RedundancCies.............ccoovvreninieeienencnenesesenes 82
3.11 Tool for Cloud Storage iN 10Tc.eciieieiie et 84
3.11.1 SOftWare REQUITEMENTScueiiriieieieie sttt 84
3.12.2 The specifications for a benchmarking tool for cloud storage systems..................... 87
3.11.3 System ArChiteCture GOAIScooiiiiiiiiiiiee e 91
3.11.4 SYStem AFCNITECIUIEeouvi it nre e 93
3.11.5 Cooperation With Other t00IS...........c.coiveiiiii i 97
CHAPTER - 4 ettt ettt h et e st e et e e s bt e e a b e e ebeeenbeesbeesnbeesbeeentaen 96
SYSTEM IMPLEMENTATION AND RESULTS ... 96
o A [(o To (3 Tox o] USSP PPN 96
4.2 deduplication Technique for Cloud StOrage..........cooveiveiiiiiiiieie e 97
4.2.1 Data SEGMENTALION ..ottt bbbt b e 98
A B =T 1] o] 7= £ o) [OOSR 101
e B 1010 13 (] o TSP PR PRSP 103

4.2.5 DAt REITIEVALeeeeeeeeeeeeeeeeeee et eteseeeeeeesss e e e s s e e e seen e snsnsssnsennnnnnnnnnnn 105

4.3 Comparative Study table of Rabin, TTTD, MAP, AE and MDPC.............cccccvevviviernenne. 106

4.4 BenChCloud ULHHZATIONooviiiiici e 107
4.5 MDPC RESUIES ...ttt 110
4.5.1 Benchmarking ENVIFONMENT ...ttt 110
4.5.2 The effect of concurrency on file uploading/downloading performance................... 111
4.5.3 The effect of file size on file uploading/downloading performance............c.cccccuo.... 113
4.5.4 Investigate the feasibility of employing Cloud............cocooiiiiiiiiiiii 115

4.6 Synchronisation clients' CharaCteristiCsccovviveiieii e 118

4.8 SUMIMAIY ...ttt b et b bbbttt b e b bt s e b e e bt se e b e e b e sn b 131
CHAPTER 5 .ottt b e bt e s ae e et e e e be e e nn e e nnresnneenneas 134
CONCLUSION AND RECOMMENDATION. ..ottt 134
5.1 CONCIUSION ...ttt bbbttt et e b bbb nne s 134
5.2 RECOMMENUALIONvtiieiiciie ettt 136
5.3 FULUIE SCOPE ...ttt b et b et b e bt nb e e et ne e ne e 139

REFERENCES ... oo 142

LIST OF FIGURES

Figure 1.1: CloUd SEOTageccoveviieiieiie ettt nes 3
Figure 2.1: (a,b&cC): Data De-duplicationcccccveveeiieiieiie e 24
Figure 2.2: Deduplication FIOWCNAIT...........cccoviiiiieiece e 35
Figure 2.3: Chunking AIGOrithm.........c.coieiiiii e 39
FIgUre 2.4: Hash VAIURoooieie ettt 41
Figure 2.5 : Fixed size chunking of data packetccccooiviiiiicie i, 42
Figure 2.6: The workflow of DPC algorithmcccooveviiieiiice e 44
Figure 2.7: Hash TUNCLIONcooviii e 51
Figure 3.1: Flowchart Methodologycccooviiriiiiiecee e 62

Figure 3.2: Design Research Methodologyccoviiiiiiiiiiiiiiiiin, 64
Figure 3.3: IOT Cloud Benchmark Architecturecoooiiiiiiiin... 71
Figure 3.4: Additive-Increase/Multiplicative-Decreasecceveviivinnnn.n.. 75
Figure 3.5: Implemented Model ... 77
Figure 3.6: System Architecture of Bench Cloud............cccccoeiiiiiiiicic e, 89
Figure 3.7: (a), (b) Two styles of test architeCture............cccovvvivevcieve e, 90
Figure 4.1: Segment NUMDbErooiiiiiiiiiiii e e 101
Figure 4.2: Data Point IndeXccooiiiiiiii e, 103
Figure 4.3: Cloud Bench Marking Environment in JAVA............................ 122

Figure 4.4: Setting up the data centres............coceviiiiiiiiiiii e 123

Figure 4.5: Data Centres Configurations.............eevuiiieeeiieeneeeiieenneaneannns 124

Figure 4.6: Implementing Proposed DPC algorithm......................ocooeennee. 125
Figure 4.7: SIMulation AT€ac.oiiriiiniiiiiii e eaee s, 126
Figure 4.8: Benchmark ... 127
Figure 4.9: Data Center Response Timecooiiiiiiiiiiiiiiiiiiiiiie, 128
Figure 4.10: Cost for Efficient Cloud Storagecoovviiiiiiiiiiiiien.. 129
Figure 4.11: Data Center BenchCloud Comparisonccoovviiiiienn... 130

Figure 4.12: Storage Cost Per Algorithm.................ooiiiiiiiiiiiii . 131

LIST OF TABLES

Table 1.1: Comparison of studies over Deduplication & chunking algorithm...... 11
Table 2.1: Data De-duplication Scenario & Typical space Savingscccceeveenne. 37
Table 4.1: SEgMENTALIONcccvveieiiiie e 100
Table 4.2: DedupliCation............c.civiiiiiicce e 102
Table 4.3: INdeXINGoonnii e 104
Table 4.4: ENCIYPLION......ccci ettt snee e eeene s 105
Table 4.5: Data RetrieVvalccooiviiiiiiecc e 106
Table 4.6: Comparative Rabin , TTTD.MAXP, AE and MDPC 107
Table 4.7: Benchmarking Environmentooiiii viiiiiiiiiiene.s 111

Table 4.8: File uploading performance with different levels of concurrency 113

Table 4.9: File downloading performance with different levels of concurrency ..113

Table 4.10: File uploading performance with different file sizes.........c...cccccoe..... 114
Table 4.11: File downloading performance with different file sizes..................... 114
Table 4.12: File uploading time with different file timec..ccccoeveiiiie e, 115
Table 4.13: File downloading time with different file time............c..c.coceevveenneen, 115

Table 4.14: Results of benchmarking for a system consisting of simulated sensor......117
Table 4.15: Examine the uploading of files' readiness time........................... 118
Table 4.16: Synchronisation clients' characteristicscccoovviiiiiiiinn... 119

Table 4.17 Compassion between Modified file size & Actual Traffic Reduction 121

Abbreviation

AES

Al

HDD

SSD

DPC

AE

TTTD

DER

BSPS

CDC

CL

HDFS

TEE

DD

FF

GH

CA

CSE

List of Abbreviations
Meaning
Advanced Encryption Standard
Artificial Intelligent
Hard Disk Device
Solid State Device
Dynamic Prime Chunking
Asymmetric Extremum
Two Threshold Two Divisor
Deduplication Element ratio
Byte Saved Per Second
Content Defined Chunking
Chuck Length
Hard Distributed File System
Trusted Encryption Environment
Data Deduplication
Fingerprint
Gear Hash
Chord Algorithm

Cloud storage Environment

QoS
DSFSC
GDPR
HIPAA
HV
LMC
RAM
SHA
MDPC
MIDD
RTT
AIMD
CSP
FTP

NPS

Quality of Service

Dual Side Fixed Size Chunking

General Data Protection Regular
Health Insurance Probability and Account Act
Hash Value

Lesk Measure of cohesion chunking

Rapid Asymmetric Maximum
Secure Hash Algorithm
Multiplicative-Divisive Probabilistic Congestion Control
Multiplicative Increase, Divisive Decrease
Round Trip Time
Additive-Increase Multiplicative-Decrease
Cloud Service Provider
File Transfer Protocol

Net Promoter Score

CHAPTER ONE

INTRODUCTION

CHAPTER ONE INTRODUCTION

CHAPTER-1
INTRODUCTION
1.1Introduction

In our increasingly digital world, data has become a precious asset driving
innovation and efficiency across industries. However, managing this vast and
diverse volume of data poses significant challenges, particularly in the context of
0T environments. Traditional storage solutions are often insufficient, prompting the
adoption of cloud storage as a versatile alternative. Cloud storage not only offers
ample space but also accessibility and security, making it an attractive option for loT
applications. The integration of (Al) and cloud systems further enhances the
potential of IoT data, enabling efficient mining and analysis. 10T's embedded
intelligence empowers sensors to collect and analyze data, revolutionizing processes
across various sectors. Cloud storage facilitates the storage and processing of this
data, paving the way for enhanced operations and insights. [1] Despite its benefits,
cloud storage in 10T environments comes with its share of concerns, particularly
regarding security and control. Entrusting sensitive data to third-party providers
raises apprehensions about data integrity and privacy. Additionally, challenges such
as data migration and dependency on internet connectivity must be addressed. [2]
While cloud storage offers advantages such as disaster recovery, scalability, and
cost-effectiveness, it also poses challenges related to data control, vendor lock-in,
and connectivity issues. Understanding these pros and cons is essential for
organizations considering the adoption of cloud storage solutions in loT
applications. [3] In conclusion, cloud storage holds promise for revolutionizing data
management in loT environments, offering both benefits and challenges. By
carefully evaluating its implications and addressing potential drawbacks,
organizations can leverage cloud storage to unlock the full potential of I0T data
while ensuring security and efficiency in their operations. [4]

CHAPTER ONE INTRODUCTION

~CLOUD
__STORAGE

\

contacts files

pictures / \ T documents

Figure 1.1: Cloud Storage [3]
1.2Cloud Storage Mechanism

Every cloud has a certain amount of storage, so if start uploading duplicate
information, the storage will be lost, and dealing with data redundancy will become
a major issue. Researchers have been investigating numerous techniques to combat
this, and data deduplication is the best answer. A method called data deduplication
was developed to improve storage [77]. Different cloud service providers, including
Dropbox, Amazon S3 and Google Drive, now use this strategy. Data duplication is
prevented by making sure it is never uploaded to the cloud more than once.

A. As the amount of digital data grows, so does the need for greater storage space.

B. Traditional solutions don't have any built-in protection against duplicate data
being saved up.

C. Data De-duplication is critical for removing redundant data and lowering
storage costs.

The quantity of data generated is growing exponentially in quickly developing
digital age. The demand for more storage space has grown as more areas of life, from
social media interactions to business transactions, are becoming digitalized. This
article looks at how inadequate present storage capabilities are for keeping up with
the rate of expansion in digital data and the significance of finding a solution.

CHAPTER ONE INTRODUCTION

e A Partial Solution: The increased need for storage space has a partial solution
in the form of cloud storage. Cloud service providers can offer scalable
storage options to consumers and businesses by utilising the enormous
capabilities of data centres. This method, however, has its own set of
drawbacks, such as worries about data privacy, security lapses, and
dependence on outside sources [9]. Additionally, the cost of storing
significant amounts of data on the cloud can rise significantly, particularly for
long-term retention.

e Explosive Growth of Digital Data: The internet's rising use, the widespread
use of smartphones, and the rise of connected gadgets have all contributed to
the digital revolution's data explosion. The amount of digital data is always
growing because of all online interactions, transactions, sensor readings, and
media uploads.

e New Technologies for Data-Intensive Systems: The problem with storage is
made worse by the emergence of data-intensive technologies like artificial
intelligence, machine learning , and big data analytics. Massive datasets are
needed for these applications in order to build models and gain insightful
knowledge. Additionally, the growing use of virtual reality, augmented
reality, and high-definition multimedia content puts extra pressure on storage
infrastructure by necessitating higher capacity and quicker data retrieval.

The lack of storage capacity is becoming an urgent issue as the digital world
develops. Finding scalable and effective storage solutions is urgent given the
exponential growth of digital data and the rising demand for data-intensive
applications. While cloud storage provides a partial solution, research into next-
generation storage systems is necessary to make sure that the storage infrastructure
can sustain the ever-growing digital world [11]. It can fulfil the increasing need for
storage space and unleash every advantage of the digital age by making investments
in technology development and promoting innovation.

The problem of redundant information has grown significantly in importance in the
era of expanding digital data. Traditional storage solutions frequently do not have
built-in duplicate data management tools. The significance of data deduplication in
eliminating redundant data and lowering storage costs is highlighted in this article.
Duplicate data refers to information that is identical and spread across different
locations in a storage system. It may be caused by a number of things, including user

CHAPTER ONE INTRODUCTION

error, system backups, or data replication procedures [13]. Duplicate data not only
takes up valuable storage space, but it also drives up prices, slows down data
retrieval, and uses resources inefficiently. Hard disc drives (HDDs) and solid-state
drives (SSDs), two common types of traditional storage, lack built-in techniques for
locating and removing duplicate data. Organisations can considerably reduce their
storage needs by getting rid of duplicate data. However, ensuring that only one copy
of each piece of information is stored, data deduplication increases data efficiency.
Enhancing data integrity means reducing duplicate data [14]. Duplicate data can
cause conflicts and inconsistencies, jeopardising the accuracy and dependability of
data that is kept. Disaster recovery procedures might be hampered by duplicate data
since it increases backup and restore times. In today's data-driven world, adopting
data de-duplication is essential for effectively managing and maximising the value
of digital data.

1.3 Literature Survey

K. Vijayalakshmi and V. Jayalakshmi in (2021) [7] suggest data duplication in
clouds, which is managed using the de-duplication technique. Although some de-
duplication techniques are used to prevent data redundancy, they are inefficient. The
major goal of this research is to gain enough knowledge and a decent concept of de-
duplication techniques through reviewing existent ways, and this work may aid
future research in establishing effective cloud storage management (CSM) solutions
for researchers.

M. Ellappan and S. Abirami in (2021) [8] suggest a novel chunking algorithm called
Dynamic Prime Chunking (DPC). DPC's major purpose is to modify the window
size during the prime value dynamically rely on the maximum and minimal chunk
size. DPC in the de-duplication scheme gives good throughput while avoiding large
chunk variance. The multimedia and operating system datasets were used for
implementation and experimental evaluation. Existing algorithms such as AE,
MAXP, TTTD, and Rabin have been compared to DPC. The performance indicators
looked at were throughput, chunk count, Bytes Saved per Second (BSPS), chunking
time, processing time and De-duplication removal Ratio (DER). BSPS and
throughput have both improved. To begin, DPC boosts throughput performance by

CHAPTER ONE INTRODUCTION

greater than 21% when compared to AE. BSPS improves performance by up to 11%
over the previous AE method.

P.Anitha et al. in (2021) [9] the secure authorities are given access control
mechanisms to do data de-duplication (DD) on the data that was outsourced.
Encryption techniques are used in the Access Control Mechanism. It employs
convergent randomised encryption and a reliable distribution of owning party keys
to allow the cloud service provider to manage outsourced data access even when
control shifts on a regular basis. The suggested technique safeguards data integrity
against attacks relies on label discrepancies. As a precaution, the suggested
technique has been changed to improve security.

Xu and W. Zhang in (2021) [10] QuickCDC improves CDC chunking speed, de-
duplication ratio, and throughput by combining three methods. Initially, QuickCDC
can move instantly to the chunk boundaries of duplicate chunks that arise frequently.
The mapping of the duplicate chunk’s first n bytes and last m bytes to chunk length
must be registered. The first n bytes and last m bytes of the current chunk are checked
to see if they are in the mapping table when chunking is performed. QuickCDC can
skip relevant chunk lengths (CL) if they are in the mapping table. QuickCDC can
skip the minimal chunk length for unique chunks. Finally, QuickCDC may
dynamically alter mask bits length such that chunk length (CL) is permanently more
than the minimal chunk length and is distributed in a limited particular location.
When the current chunk length (CL) is less than the expected chunk length (CL),
should use longer mask bits, and when the current chunk length (CL) is more than
the expected chunk length (CL), should utilize shorter mask bits. Experiments show
that QuickCDC's chunking speed is 11.4x that of RapidCDC, and the associated de-
duplication ratio is somewhat increased, with a maximum de-duplication ratio
improvement of 222.3% and a throughput improvement of 111.4%.

N. Kumar and S. Jain in (2019) [11] suggest Differential Evolution DE-rely on
TTTD-P optimized chunking to maximize chunking throughput while increasing de-
duplication ratio DR The use of a scalable bucket indexing strategy minimizes the
time it takes to find and declare duplicated hash values (HV). It chunks about 16
times greater than Rabin CDC, 5 times greater than AE CDC, and 1.6 times greater
than FAST CDC (HDFS).

CHAPTER ONE INTRODUCTION

Y. Fan et al., in (2019) [12] system improves the capacity of like cryptosystems to
resist selected plaintext and selection ciphertext attacks by augmenting convergent
encryption with users' privileges and relying on TEE to provide secure key
management. system is secured sufficient to facilitate data de-duplication (DD) as
well as protecting the privacy of sensitive data, according to a security analysis.
Moreover, create a prototype of system and analyze its performance. Experiments
reveal that system overhead is practical in real-world scenarios.

H. A.Jasim and A. A. Fahad, in (2018) [13] novel fingerprint function (FF), a multi-
level hashing and matching mechanism, and a novel indexing technicality to hold
metadata to progress the TTTD chunking algorithm. These novel technicalities
include four hashing algorithms to handle the collision issue, as well as adding a
novel chunk stipulation to the TTTD chunking criterion to improve the number of
small chunks and hence the De-duplication Ratio.

H. Wu. In (2018) [14] suggests a sampling-rely on chunking algorithm and improve
SmartChunker, a tool to predict the appropriate chunking configuration for de-
duplication schemes. Smart Chunk's effectiveness and efficacy have been
demonstrated in real-world datasets.

M. Oh et al., in (2018) [15] suggest novel de-duplication technique that is extremely
compatible and scalable with the exhausted storage currently in use. The approach
combines file system and de-duplication meta-information into a single object, and
it manages the de-duplication ratio online through initial aware of post-processing-
related scheme demands. When executing a variety of standard storage workloads,
the experimental findings illustrate that solution could save greater than 90% of total
storage space while providing the same or similar performance as traditional scale-
out storage.

W. Xia et al. in (2016) [16] suggest FastCDC, a Fast and effective CDC approach,
which constructs and enhances on the latest Gear-based on CDC technique, one of
the fastest CDC techniques to knowledge. FastCDC's main idea is to integrate five
key mechanics: gear-rely on rapid rolling hash, improving and simplifying Gear hash
(GH) verdict, skipping sub-minimal chunk cut-points, normalizing the chunk-size
distribution in a small specific region to address the issue of reduction de-duplication

CHAPTER ONE INTRODUCTION

ratio caused by cut-point skipping. FastCDC is around 10 times quicker than the best
open- source Rabin-based on CDC, and about 3 times greater than the state-of-the-
art Gear- and AE-rely on CDC, while obtaining almost the same de-duplication ratio
as the standard Rabin-rely solution, according to evaluation results.

X. Xu. et al. in (2016) [17] focus on non-center cloud storage data de-duplication
and present a new two-side data de-duplication (DD) mechanism. The Chord
algorithm (CA) is optimized. The suggested two-side data de-duplication (DD)
technique outperforms the traditional data de-duplication (DD) mechanism in terms
of de-duplication rate.

R. Kiruba karan et al. in (2015) [18] present a cloud-based technique for achieving
de-duplication of a huge amount of data available. The approach includes data de-
duplication before uploading to cloud storage as well as data reverse de-duplication
when obtaining the required data. The model is more effective and accurate than
existing de-duplication systems because of the type of algorithm utilized.

V. Maruti et al. in (2015) [19] the main goal of this technique is to delete reiterate
data from the cloud. It can also aid in the reduction of bandwidth and storage space
usage. Each user has their own unique token and has been allocated various
privileges based on the duplication check. The hybrid cloud architecture is used to
achieve cloud de-duplication. The proposed technique is more secure and uses fewer
cloud resources. It was also demonstrated that, when compared to the standard De-
duplication technique, the proposed system had a low overhead in duplicate removal.
On this work, both content level and file level de-duplication of file data is examined
in the cloud.

X. Xuand Q. Tu, in (2015) [20] de-duplication scheme architecture for cloud storage
environments (CSE). DelayDedupe, a delayed target de-duplication strategy rely on
chunk-level de-duplication and chunk access frequency, is suggested to decrease
response time in storage nodes (S nodes). When used in conjunction with replica
arrangement, this technique evaluates whether fresh multiplied chunks for data
update are hot and, if they aren't, eliminates the hot duplicated chucks. The findings
of the experiment show that the DelayDedupe method may successfully minimize
response time while also balancing the storage demand on Nodes.

CHAPTER ONE INTRODUCTION

Y. Zhang in (2015) [21] Suggested a novel CDC algorithm indicated the
Asymmetric Extremum (AE) algorithm. The major idea behind AE is relies the
observance that in dealing with the boundaries-shift issue, the maximum value in an
asymmetric local domain is improbable to be exchanged through a novel extreme
value, which motivates AEs utilize of asymmetric (instead of symmetric, as in
MAXP) local domain to distinguish cut-points and attain high chunking throughput
while minimizing chunk size variance. According to the result, AE addresses the
issues of low chunking throughput in MAXP and Rabin, as well as excessive chunk-
size volatility in Rabin, at the same time. AE enhances the throughput speed of state-
of-the-art CDC algorithms by 3x while achieving equivalent or greater de-
duplication efficacy, according to experimental results that rely on four real-world
datasets.

W. leesakul et al. in (2014) [22] suggested dynamic data de-duplication (DD)
strategy for cloud storage, in order to strike a balance among changing storage
efficacy and criteria for fault tolerance, as well as to increase cloud storage
performance. adjust the number of copies of files in real time to match the changing
degree of QoS. The results of the experiments reveal that suggested scheme works
effectively and can deal with scalability issues.

Krishnaprasad and B. A. Narayamparambil in (2013) [23] suggested a novel Dual
Side Fixed Size Chunking (DSFSC) algorithm to achieve a rising de-duplication
ratio for comparison to conventional FSC. This approach can successfully be utilized
for audio or video files to produce a best De-duplication ratio without requiring
computationally exorbitant variable size chunking or content determined chunking.
Storage management and energy expenses will be reduced if storage requests are
reduced.

In recent years, the proliferation of multimedia data in various applications has
brought forth challenges related to security, data analytics, sharing, and
optimization. This literature review synthesizes findings from four key studies in the
field, focusing on secure multimedia data processing, data analytics, security
models, and optimization techniques in diverse contexts.

CHAPTER ONE INTRODUCTION

Srinivasan et al. (2022) propose a Secure Multimedia Data Processing Scheme for
medical applications. They address the crucial need for security in handling sensitive
medical data by introducing a scheme that ensures secure processing of multimedia
data. By employing encryption techniques and access controls, the proposed scheme
aims to safeguard patient privacy and prevent unauthorized access to medical
records. This study underscores the importance of security measures in medical
applications to maintain data integrity and confidentiality.

Kumari and Tanwar (2022) present a Secure Data Analytics Scheme tailored for
multimedia communication within a decentralized smart grid infrastructure.
Focusing on the energy sector, their scheme addresses the challenges of securing
data analytics processes in decentralized environments. By integrating encryption,
authentication, and anomaly detection mechanisms, the proposed scheme enhances
the security of multimedia data transmission and analysis in smart grid networks.
This study highlights the significance of secure data analytics in ensuring the
reliability and integrity of critical infrastructure systems.

Dhar et al. (2023) introduce an Advanced Security Model for Multimedia Data
Sharing in the Internet of Things (IoT) environment. Recognizing the vulnerability
of 10T devices to security threats, their model offers a comprehensive approach to
securing multimedia data sharing in 10T ecosystems. Through the integration of
access control, authentication, and encryption techniques, the proposed model aims
to mitigate risks associated with unauthorized access and data breaches. This study
emphasizes the need for robust security models to address the unique challenges
posed by multimedia data sharing in 10T environments.

Sharma et al. (2023) focus on optimizing multimedia data using computationally
intelligent algorithms. Their study explores the application of artificial intelligence
techniques to enhance the efficiency and performance of multimedia systems. By
leveraging intelligent algorithms such as machine learning and optimization
algorithms, the proposed approach aims to optimize multimedia data processing,
storage, and retrieval. This research underscores the potential of computational
intelligence in addressing the complexities of multimedia data management and
improving system performance.

10

CHAPTER ONE INTRODUCTION

Overall, the reviewed studies underscore the critical importance of security, data
analytics, and optimization techniques in handling multimedia data across various
domains. These studies offer valuable insights and methodologies for addressing the
challenges associated with secure processing, sharing, and optimization of
multimedia data, thereby contributing to advancements in the field of multimedia
tools and applications.

S. Luo and M. Hou in (2013) [24] suggest a new chunk coalescing algorithm (CCA),
this refers to the minimal and maximum amount of sub chunks which should be
coalesced to form super chunks (SC). Experiments demonstrate that algorithm
eliminates the expenses of the chunk coalescing (CC) procedure and speeds up the
entire data de-duplication procedure.

Table 1.1: Comparison of studies over Data De-duplication & chunking

algorithm
S. Authors Algorithm/method/ Advantages Drawback
No. Techniques
1 N. Kumar and Differential Hash values Take too much
S. Jain 2019 Evolution (DE), (chunks about 16 time to
Two Thresholds times greater calculate the
Two Divisors than Rabin CDC, hash value.
(TTTD-P) 5 times greater
algorithm, than AE CDC,
and
1.6 times greater
than
FAST CDC
2 W. Leesakul Dynamic Data De- experiments Cannot work
etal. 2014 duplication reveal that our with the
proposed system encryption
works effectively keys

11

CHAPTER ONE

INTRODUCTION

3 Y. Fan et al.
2019

4 M. Oh et al.
2018

5 P. Anitha et
al. 2021

6 R. Kiruba
karan et al
2015

7 M. V. Maruti
et al. 2015

De-duplication
system that includes
the processes of
duplicate checking

A novel
de-duplication
technique

secure rising
scalable data de-

duplication

architecture

a cloud-rely
technique for de-
duplication of huge
data

novel duplication
check technique that
configuration the
token for the private
file

implement the Take too much

security analysis processing
and also power of the
performance system and
evaluation is consume more
effective and power
feasible in
practice
experimental It will occupy
findings illustrate more than
that our solution 20% more
could save storage than
greater than 90% other
of total storage algorithms
space
The system is Risk factors
virtually as high
successful as the
existing ones
(minor increase
in computational
overhead)
The model is The model is
more efficient efficient but it
and accurate IS too costly.
compared to that
of the existent
de-duplication
techniques.
the system Consume
achieveis98 % more power

for execution

12

CHAPTER ONE

INTRODUCTION

8 K.
Vijayalakshmi
and V.
Jayalakshmi
2021

9 X. Xu et al
2016

10 X.XuandQ.
Tu 2015

11 M. Ellappan
and

S. Abirami
2021

data duplication
(DD) in clouds

two- side data de-

duplication (DD)

technique, Chord
algorithm

de-duplication
scheme architecture
for cloud storage
environments (CSE)

Dynamic Prime
Chunking (DPC),
Existing algorithms,

the system
achieves efficient
knowledge and a
good idea
concerning de-
duplication
techniques
two-side data de-
duplication (DD)
technique
outperforms the
traditional data
de-duplication
technique in
terms of de-
duplication rate
Delay Dedupe
method may
successfully
minimize
response time
while also
balancing the
storage demand
on Snodes

DPC's durable
performance
over the another
existent
algorithms in
terms of BSPS
and the efficacy
of the backup

Can not
manage TB of
data in the
cloud
environment

Can not
manage more
than 50 VMs

algorithms
often lack

comprehensive

validation and

may not be
well-

understood by

the research or
practitioner
communities
Storage and

cost high

13

CHAPTER ONE

INTRODUCTION

12 H. A. Jasim
and

A. A. Fahad
2018

13 W. Xiaetal.,
2016

14 Z. Xuand W.

Zhang 2021

a novel fingerprint
function (FF),

FastCDC, a Fast
and effective CDC
approach

Content Defined
Chunking (CDC)

storage scheme

good de-

duplication ratio

and rapid
execution time,
efficacy of the
suggest
algorithm was
evaluated
utilizing two
relatively
datasets
FastCDC is
around 10 times
quicker than the

best open-source

Rabin- based on
CDC, and about
3 times greater

than the state-of-
the-art Gear- and

Show that
QuickCDC's
chunking speed
is 11.4x that of
RapidCDC, and
the associated
de-duplication
ratio is
somewhat

Efficiency
increases but
attack rate is

high

Algorithms in
terms of
Chunk and the
efficacy of the
backup storage
is less

drawback of
the Content-
Defined
Chunking
(CDC)
algorithmis its
potential
sensitivity to
changes in data

14

CHAPTER ONE

INTRODUCTION

15 S. Luo and M.
Hou 2013

16 H.Wuetal.

2018

a new chunk
coalescing.
algorithm (CCA)

a sampling-based on
chunking algorithm
and improve
SmartChunker

increased, with a patterns.

maximum de-
duplication ratio
improvement of
222.3%

demonstrate that
our algorithm
eliminates the
expenses of the
chunk coalescing
procedure and
enhance the
efficacy of hash-
comparison

illustrate that a
sampling-based
chunking
algorithm and
enhance
SmartChunker
application-
specified chunk
configurations

CCA may not
perform
optimally
across all
types of data
or workloads.
It is primarily
designed to
reduce
redundancy in
similar
chunks, so it
may not be as
effective for
datasets.
The
algorithm's
efficiency can
be
compromised
if the chosen
sampling
strategy
introduces
bias, leading
to suboptimal
chunk
boundaries

15

CHAPTER ONE INTRODUCTION

and reduced
effectiveness

1.4 Research problem

The rapid proliferation of the Internet of Things (loT) has revolutionized the way
data is generated, transmitted, and utilized, fostering unprecedented opportunities
for innovation and efficiency across various domains. However, the seamless
integration of 10T devices with cloud computing platforms has brought forth a
myriad of challenges, particularly concerning the storage and management of vast
volumes of loT-generated data. In this context, the pressing research problem lies in
the development of a robust and secure data storage mechanism tailored explicitly
for cloud based IoT applications. The current landscape of data storage in such
environments is fraught with obstacles, ranging from data security and privacy
concerns to the optimization of storage and retrieval processes.

First and foremost, the paramount concern revolves around ensuring the security and
privacy of loT-generated data stored within the cloud. Given the sensitive nature of
much of this data, including personal and proprietary information, stringent
measures must be implemented to safeguard against unauthorized access, data
breaches, and malicious attacks. Furthermore, compliance with regulatory
frameworks, such as GDPR and HIPAA, adds an additional layer of complexity to
data security requirements. Moreover, the scalability and accessibility of data
storage solutions in cloud based 10T environments pose significant challenges. As
the volume of data continues to escalate exponentially with the proliferation of 10T
devices, traditional storage architectures struggle to keep pace with the demands for
scalability and efficiency. Hence, there is a critical need for innovative approaches
that can seamlessly scale storage resources in response to fluctuating workloads

16

CHAPTER ONE INTRODUCTION

while ensuring high availability and reliability. Furthermore, optimizing storage and
retrieval processes to enhance overall system performance and efficiency is
imperative. With the diverse nature of loT-generated data, ranging from real-time
sensor readings to multimedia content, the design of storage mechanisms must be
tailored to accommodate varying data types and access patterns efficiently. This
entails the exploration of novel data storage architectures, data indexing techniques,
and data retrieval algorithms optimized for cloud-based 10T environments.

Addressing these multifaceted challenges requires a holistic approach that
encompasses technological innovation, robust security measures, regulatory
compliance, and efficient resource management. By developing an effective and
highly secure data storage mechanism specifically tailored for cloud based loT
applications, we can unlock the full potential of 10T technologies while mitigating
the associated risks and ensuring the integrity and confidentiality of sensitive data.
This research endeavour holds immense significance in shaping the future trajectory
of 10T and cloud computing ecosystems, paving the way for a more connected,
secure, and resilient digital

1.5 Research Objectives

The aim of this research is to design a new efficient mechanism for cloud storage
and Internet of things environments. The proposed mechanism is designed to gain
attention in large-scale storage systems based on text, image, and video. Hence, in
order to achieve the research aim, the following objectives are formulated:

1) To design a new mechanism to improve the performance of a large storage
system by applying the de-duplication technique.

2) To evaluate the performance of the proposed mechanism in comparison with
available solutions in a simulated environment.

3) To verify and validate the proposed mechanism based on the results obtained
from the simulation experiments that ensure the correctness of its
implementation.

17

CHAPTER ONE INTRODUCTION

1.6 Contribution of the Research

The networked machines can connect with one another thanks to middleware, which
Is another piece of software employed by the central server.

1) Mechanism Design: The research proposes a mechanism for cloud storage in 0T
environments, focusing on enhancing performance through the implementation of
deduplication techniques. This approach aims to optimize resource utilization and
reduce storage costs, addressing a key challenge in large-scale storage systems.

2) Performance Evaluation: The research conducts comprehensive performance
evaluations of the proposed mechanism compared to existing solutions in simulated
environments. By rigorously assessing its efficiency, scalability, and reliability, the
study provides valuable insights into the effectiveness of the proposed approach in
real-world applications.

3) Validation and Verification: Through rigorous validation and verification processes
based on simulation experiments, the research ensures the correctness and
effectiveness of the proposed mechanism. By verifying its functionality and
performance against established benchmarks, the study establishes the reliability
and viability of the proposed solution for practical deployment in cloud-based IoT
environments.

1.7 significance of the research

The successful resolution of the problem regarding an effective secured data storage
mechanism for cloud based IoT promises to bring about a multitude of significant
by enhancing security and privacy measures within the proposed mechanism, the
research directly addresses Objective. Achieving heightened security ensures the
protection of loT-generated data stored in the cloud, aligning with the objective to
design a mechanism to improve large storage system performance through
deduplication techniques. As the proposed mechanism ensures secure and efficient
data storage, it directly contributes to instilling greater confidence in the utilization
of 10T technologies, supporting Objective. Organizations and individuals will trust
loT applications more knowing their data is securely stored, thereby validating the
mechanism's performance in comparison with existing solutions. The enhanced
accessibility and reliability of loT data resulting from the proposed mechanism

18

CHAPTER ONE INTRODUCTION

directly support Objective through verification and validation processes, the research
confirms the correctness and effectiveness of the mechanism, ensuring its reliability
In storing and retrieving data seamlessly. Efficient resource utilization, including
cost and energy savings, is a direct outcome of the proposed mechanism, in line with
Objective by optimizing storage efficiency through deduplication techniques, the
mechanism minimizes resource wastage, contributing to the performance
Improvement of large-scale storage systems. The proposed mechanism's ability to
seamlessly scale to accommodate increasing volumes of IoT data aligns with
Objective through simulation experiments and performance evaluations, the
research verifies the mechanism's scalability, ensuring its suitability for evolving 10T
deployments without storage limitations.

1.8 Outlines of Thesis

The following chapters are presented in this thesis: Chapter One presents the basic
introduction, problem statement, methodology objective of the study and some other
aspects. Chapter Two presents the theoretical background. It theoretically explains
the method and techniques used in this study. The proposed methods or
methodology used in this study will be depicted in Chapter Three. The collected
methods, techniques, algorithms collected in the proposed methodology will be
analyzed in this chapter. The primary outcomes of the proposed system employing
various strategies are shown in Chapter Four. The findings are given separately for
each model. Chapter Five summarises the results reached throughout this thesis,
overall conclusion derives from the study and briefly lists potential future works.

19

CHAPTER TWO

THEORETICAL BACKGROUND

CHAPTER TWO THEORETICAL BACKGROUND

CHAPTER -2

THEORETICAL BACKGROUND

2.1 Performance Metrics and its Types:

In today's interconnected world, the utilization of cloud storage in 10T environments
has become paramount for efficient data management. However, the success of
cloud storage implementation depends not only on its benefits but also on its
performance. Performance metrics play a crucial role in evaluating the effectiveness
and efficiency of cloud storage solutions for 10T applications. This paper explores
various types of performance metrics essential for assessing cloud storage
performance in 0T environments.

1. Throughput: Throughput measures the rate at which data can be transferred to and

from the cloud storage system. In 10T environments, where data is continuously
generated and transmitted by numerous sensors and devices, high throughput is
critical for timely data processing and analysis. Throughput metrics assess the
system's ability to handle data influx efficiently, ensuring smooth operations and
real-time insights.

. Latency: Latency refers to the delay between data transmission and reception,
affecting the responsiveness of 10T applications. Low latency is essential for
applications requiring immediate data processing, such as real-time monitoring and
control systems. Latency metrics evaluate the speed of data retrieval and processing
within the cloud storage infrastructure, ensuring minimal delay and optimal
performance for 10T devices.

. Availability: Availability measures the accessibility of data stored in the cloud
storage system. In 10T environments, where data accessibility is vital for decision-
making and operation, high availability is crucial to ensure uninterrupted access to
critical information. Availability metrics assess the reliability of the cloud storage
infrastructure, including backup and redundancy mechanisms, to maintain
continuous data availability and prevent downtime.

. Scalability: Scalability evaluates the ability of the cloud storage system to
accommodate growing data volumes and user demands. In dynamic loT
environments, where data volumes can fluctuate rapidly, scalable storage solutions

21

CHAPTER TWO THEORETICAL BACKGROUND

are essential to accommodate evolving needs. Scalability metrics assess the system's
capacity to scale resources seamlessly, ensuring consistent performance and
resource utilization as data requirements evolve over time.

5. Reliability: Reliability measures the consistency and predictability of cloud storage
performance over time. In 10T environments, where data integrity is crucial for
accurate analysis and decision-making, reliable storage solutions are essential to
maintain data consistency and integrity. Reliability metrics assess factors such as
system stability, data durability, and error handling capabilities to ensure consistent
performance and data integrity in diverse operational conditions.

2.2 Data Deduplication

Data duplication in Cloud 10T environments represents a critical challenge and
opportunity in the modern digital landscape. As loT devices become more prevalent
and diverse, generating vast volumes of data, efficient data management is
paramount. Data duplication, in this context, refers to the occurrence of redundant
data across multiple 10T devices and cloud storage systems. Addressing this issue is
pivotal to optimizing storage resources, enhancing data processing speed, and
ensuring cost-effective operations in cloud based loT setups. Cloud IloT
environments leverage sophisticated algorithms and techniques to identify and
eliminate duplicated data efficiently. By employing deduplication methods, such as
hash-based comparisons and metadata indexing, redundant data can be
systematically identified and stored only once, saving precious storage space and
network bandwidth [25].

Furthermore, in the context of Cloud 10T, data deduplication plays a crucial role in
ensuring data integrity, security, and real-time processing efficiency. Reducing data
duplication not only conserves storage resources but also enhances data analytics
and decision-making processes. In scenarios where real-time responses are essential,
eliminating duplicate data ensures that the analytics systems receive accurate and
up-to-date information, leading to more informed decisions. Additionally,
deduplication mitigates the risks associated with storing multiple copies of sensitive
loT data, promoting data security and privacy compliance [26]. By implementing
robust data deduplication techniques within Cloud loT environments, businesses can

22

CHAPTER TWO THEORETICAL BACKGROUND

unlock the full potential of their 10T ecosystems, fostering innovation and enabling
seamless integration of I0T technologies into various applications and industries.

' Y 1 1 X
Y X 2
z T X 4
Yoo
a i 1 1 2 X
v} X
z T X 2
\
/"
/l 1 1 X
z T X 2
1
Y 2
7z T X
g

(a) Fig: 2.1 Data Duplication [78]

The data duplication figure illustrates the process of data deduplication, which
involves identifying and eliminating duplicate copies of data. It includes steps
such as chunking data into smaller pieces, identifying unique data chunks, and
replacing redundant chunks with references to the unique ones. The figure also
depict how data deduplication improves storage efficiency and network transfer
by reducing the amount of redundant data stored and transmitted.

23

CHAPTER TWO THEORETICAL BACKGROUND

1021 1022 1023 1021 1022 1023
DataA Data A DataB Data A e DataB
(empty)
1024 1025 1026 1024 1025 1026
1024 v 1026
DataA | |DataC Data A Appiying || (empty) DataC oty
1027 1028 1029 | Sedupicaton Ty 1028 1029

) 057 | [1028 1029

Data B Data C DataC

3 {empty) | | (empty) | | (empty)
1030 1031 1032 1030 1031 1032
empty empty empty empty empty empty

After applying deduplication
technique, the duplicate copy of
dataare freedby storing the
pointerin the data place
(1021,1022,.. are pointers of the
storage places)

Duplicate copies of data
in storagespace (Data A,
Data B and Data C has
multiple copies)

(b) Fig: 2.1 Data Duplication [79]

The data duplication figure illustrates various techniques and processes involved in
data deduplication for storage of big data in the cloud. It depicts methods such as
chunking, hashing, indexing, and duplicate detection algorithms. The figure also
highlights how these techniques contribute to reducing storage overhead and
improving storage efficiency in cloud environments.

start
!
sending data chunk
i
verifying format of data chunk and splitting into object
!
Determine hash value of data chunk
}
imi Matching
Ell_mlnate True hash value False store data chunk
duplicate data <«—— S e .
Withincex in memory
chunk Redundant of memory New data
] data
¢ Stop

Figure 2.1: (a,b&c): Data De-duplication [28]

24

CHAPTER TWO THEORETICAL BACKGROUND

Figure 2.1 in the research portrays the intricacies of data deduplication. It
encapsulates the process through three key elements: (a) Data Input, signifying the
Initial data influx into the system; (b) Deduplication Process, showcasing various
stages such as chunking, hashing, and duplicate identification; and (c) Deduplicated
Data Output, illustrating the storage of unique data along with potential metadata or
pointers. This visualization serves to elucidate the methodology employed in
minimizing data redundancy and enhancing storage efficiency within the
deduplication framework.

A deduplication flowchart typically represents the process of identifying and
eliminating duplicate data within a system. The flowchart begins with the input of
data, which then undergoes a comparison process. During this step, the data is
analysed to identify duplicate elements. If duplicates are found, a decision point is
reached, leading to the removal of redundant data. After deduplication, the flowchart
might involve storing the cleaned data in a database or another storage system. This
process ensures that only unique and non-redundant data is retained, optimizing
storage space, improving data accuracy, and enhancing overall system efficiency.
By visually representing these steps, a deduplication flowchart provides a clear and
structured outline of the data cleaning process, aiding in understanding and
implementation for various applications, such as databases, cloud storage [27].

Data de-duplication, sometimes known as Dedup for short, is functions that can
assist minimize the cost of duplicate data storage. When Data De-duplication is
enabled, it optimizes free space on a volume by evaluating the data on the volume
and looking for duplicated portions. Duplicated portions of the volume's dataset are
stored just once and (optionally) compressed to save space. Data de-duplication
reduces redundancy while maintaining data authenticity and integrity.

Data de-duplication is a procedure that eliminates redundant data copies and
dramatically reduces storage capacity requirements. De-duplication can be
performed as an inline procedure as data is written into the storage system and/or as
a background operation to remove duplicates after data is stored to disk.

The performances for de-duplication operations are small since it runs in a separate
efficiency domain from the client read/write domain. It runs in the background,

25

CHAPTER TWO THEORETICAL BACKGROUND

regardless of which application is running or how the data is accessed (NAS or
SAN). De-duplication savings are preserved as data travels - when it is copied to a
disaster recovery site, backed up to a vault, or moved between on-premises, hybrid
cloud, and/or public cloud.

Chunking is the process of dividing a data stream into several pieces. When the
chunk size is high, the cost of computation is reduced, but the result of deduplication
may not be immediately apparent. When the chunk size is on the tiny side, the cost
of computation is high, and the impact of deduplication is noticeable.

2.2.1 Methods of Data Deduplication

The data gathered through various sources and the emergence of the loT has
significantly increased the volume of data from petabytes to yottabytes, therefore
necessitating the cloud computing paradigm in order to process and store data. The
duplicated sections of the dataset are stored once along with being subjected to
optional compression to free up even more space. It is also beneficial in ensuring
veracity along with maintaining data integrity. [43] There are various methods of
data deduplication such as inline deduplication, post processing duplication, source
deduplication, target deduplication and client-side deduplication.

There are two approaches that may be used to remove unnecessary deduplicate from
material. [44]

1) Deduplication In-Line.

Due to the fact that it is processed inside a reinforcement framework, inline
deduplication simplifies the information. When information is maintained in contact
with reinforcement accumulating, it is possible to eliminate instances of duplication.
Although inline deduplication needs less stockpiling of reinforcements, it might still
result in bottlenecks. The capacity exhibit provider recommends that their inline data
deduplication solutions have their output twisted off in order to achieve high
throughput.

Inline deduplication is a widely prevalent method that comprises deduplication and
compression where data reduction takes place before the incoming data is written to

26

CHAPTER TWO THEORETICAL BACKGROUND

the stored media. Inline deduplication is essentially the removal of redundancies
from a given data along with being a software defined storage solution or a storage
controller that is in control of the places and the processes through which the data is
saved and secured. The Inline deduplication method takes account of the entirety of
data going through the tool and is scanned, deduplicated and compressed in real-
time. Additionally, inline processing is also found to reduce the raw disk capacity
that is needed in the system.

It takes place because the un-deduplicated and uncompressed dataset in its original
size is never written to the disk. Therefore, the write operations that are executed are
also comparatively lower thereby reducing the wear on the disks. However, it can
also be observed that in inline deduplication the process significantly slows down
the data backups that eventually is found to impede the entire process. This
eventually reflects the fact that the result will thereby be devoid of any redundant or
inefficient data. Inline deduplication is found to rely on the processes that exist
between the data origin servers and the data backup destinations.

2) De-duplication After Processing

Simultaneously, post-processing data duplication is the process where the data at
first is written to the storage media which is then followed by the analysis of
duplication along with identification of any scopes for compression opportunities.
The deduplication and compression is executed only after the data is securely stored
in the storage device. In addition to this, in the process of post-processing data
duplication the initial capacity that is required is somewhat related to the raw data
size. Simultaneously, the optimised data is then saved back to storage media. It is
done with relatively lesser space requirements in comparison to that of before data
reduction.

Post-processing dedupe is a 735 synchronous reinforcement operation that
eliminates repeated data after it has been maintained in contact with capacity. The
data that has been entered more than once is removed, and it is replaced with an
indication that is positioned toward the principal focus of the square. The post-
processing method provides customers with the flexibility to dedupe certain
remaining jobs at hand and the speed to quickly recoup the most recent

27

CHAPTER TWO THEORETICAL BACKGROUND

reinforcement without requiring water. The trade-off for this is a larger
reinforcement stockpile limit than would be required with inline deduplication [45].

Post-processing data duplication is identified as an asynchronous backup process
that is beneficial in the removal of redundant data after it is successfully written to
storage. This process provides the user with enough flexibility and independence
towards deduping specific workloads along with efficient recovery of the most
recent backup. The post-processing data duplication is found to utilise the latest
backup and is therefore found to take up more disk space in comparison to other
deduplication processes. However, the post-processing data duplication takes a
relatively lengthier processing time because of the fact that data is identified prior to
the removal of the duplicate data from the storage unit.

3) source deduplication

Source deduplication, also known as client-side deduplication, is a data
deduplication technique that occurs at the source of data generation or transmission.
In this approach, data deduplication processes are performed on the client or source
device before the data is transferred over the network to the storage destination, such
as a cloud server or backup appliance.

This technique involves identifying duplicate data blocks or chunks within the data
stream at the source device and eliminating redundant copies before transmitting the
data to the storage system. By eliminating duplicate data at the source, source
deduplication reduces the amount of data transferred over the network and stored on
the destination storage system, leading to significant savings in bandwidth and
storage capacity.

4) target deduplication

Target deduplication is a data deduplication technique that occurs at the storage
destination or target device, such as a backup appliance or storage array. In contrast
to source deduplication, which eliminates duplicate data at the source before
transmission, target deduplication identifies and removes redundant data after it has
been transferred and stored on the destination storage system.

28

CHAPTER TWO THEORETICAL BACKGROUND

In target deduplication, data deduplication processes are performed on the storage
device itself, where duplicate data blocks are identified and eliminated based on
predefined algorithms or patterns. This approach allows organizations to achieve
data reduction and storage optimization benefits without requiring changes to the
client or source devices.

5) client-side deduplication

Client-side deduplication, also known as source deduplication, is a data
deduplication technique that occurs at the source or client device before data
transmission or backup. In client-side deduplication, duplicate data blocks are
identified and eliminated locally on the client device before transferring the unique
data to the storage destination.

2.2.2 Data Deduplication strategies

Primarily, there is the record level, the square level, and the byte-level method, and
each of them may be improved for increased storage capacity.

= File-level data deduplication strategy: This strategy functions at the file level
and not at the sub-file level or the block level. File-level data deduplication is
a technique used for data optimization. This helps in eliminating redundancy
at the file level. This is what helps this strategy significantly save storage
space and improves the efficiency of data storage. This strategy first identifies
the duplicate files and then retains only a single instance of each unique file.
The duplicates are replaced as references and pointers to the original file. The
duplicate files are identified across the whole storage system. The duplicate
files are identified regardless of their location or format.

This technique is particularly effective where the files are frequently
duplicated. It is also effective in an environment where many similar files are
stored. For example, it will be very effective to use a file-level data de-
duplication strategy in file servers or data repositories [46]. The major benefit
of file-level data de-duplication is that it helps in reducing storage space. In
addition to that, this technique also helps to reduce backup windows,
improving backup and restore performance. This involves only unique files,

29

CHAPTER TWO THEORETICAL BACKGROUND

which makes the backup of files faster and reduces the recovery times of the
files.

These benefits help to reduce the corruption of files as the number of files gets
reduced. This definitely enhances the entire data management system. The
two steps used in this technique include

1. The system scans the storage environment, which includes analysing
the metadata and the duplicate content files. Metadata contains details
like names, sizes, creation dates, and more attributes of the file [47].
The Metadata helps to differentiate between two or more different files.
The analysis of the content involves an actual data examination within
the files.

2. The identification of the duplicate files is followed by keeping one
single copy of the file as the reference file and the other duplicate files
are saved as pointers or references to the primary file [48]. This gives
easier access to duplicate files with the help of pointers and clearly
saves storage space.

= Block-level data deduplication technology: This technique is different from
the file-level de-duplication technique as in this; the duplicate file is identified
at the granular level. These are called “data blocks”. The data from different
files are broken into blocks to identify duplicate data. The identified duplicate
data is then replaced with pointers or references to the single instance of the
block [49]. The three main benefits of this technique include saving storage
space, reducing backup windows, and enhancing data transfer speeds. The
data in this technique is stored in fixed or variable-sized blocks. The sizes of
these blocks range between a few kilobytes to several megabytes.

Each block identified in this technique is processed individually and the
unique hash value for each block is calculated. This hash value represents the
data within each block and hence serves as a fingerprint for accessing the data.
The significant steps in this data deduplication technique are:

1. The data from the files are broken into blocks after a thorough scanning

30

CHAPTER TWO THEORETICAL BACKGROUND

of the files.

2. The hash values are assigned to each block, which helps in easy access
to these data. This helps to find the duplicate data in these files.

3. The hash value brings forward the duplicate data and these are then
replaced with pointers or references to the single block file. This block
is called the “reference file”.

This technique helps in making the storage process efficient. Organisations can
reduce storage space by eliminating the identified duplicate files. Organisations
often use this method to store higher amounts of data in the same storage system.
This technique also helps to have an efficient backup and restore system [50]. This
happens because this technique only uses unique blocks and these are transferred
and stored as it is. This makes the backup time lesser and creates shorter backup
windows.

> Block-Level Innovation

Modifications made on the inside of the file will result in the whole document having
to be stored. PPT and other documents may need to undergo minor adjustments to
their fundamental information. For instance, if a page has to be updated to display
the most recent report or the dates, this may need a complete restore of the archive.
The block level information de-duplication technology saves just one version of the
paper and the subsequent portion of the differences that have been made between
versions. The file-level innovation, which is often under a 5:1 compression ratio,
whereas the block-level storage innovation may pack the information limit of 20: 1
oreven 50: 1

> Evacuate file level innovation

File-level information de-duplication technology, the record is extremely little, and
the rehashing of the information by the designated authority takes practically no time
to calculate. Because of this, the method for expulsion has very little impact on the
execution of reinforcement. Due to the fact that the file is little and has a low
recurrence level, the report level handling load needed to evacuate the innovation is
also comparatively modest. A less impact on the amount of time required for

31

CHAPTER TWO THEORETICAL BACKGROUND

recovery. Remove the technical need to "reassemble™ the information square by
using the square level essential file coordinating square and the information square
pointer. The record level innovation consists of a one-of-a-kind archive storage and
highlighting the document pointer, which significantly reduces the amount of time
required to rebuild.

> Cloud Storage Mechanism

Every cloud has a certain amount of storage, so if start uploading duplicate
information, the storage will be lost, and dealing with data redundancy will become
a major issue. Researchers have been investigating numerous techniques to combat
this, and data deduplication is the best answer. A method called data deduplication
was developed to improve storage [77]. Different cloud service providers, including
Dropbox, Amazon S3 and Google Drive, now use this strategy. Data duplication is
prevented by making sure it is never uploaded to the cloud more than once.

A. As the amount of digital data grows, so does the need for greater storage space.

B. Traditional solutions don't have any built-in protection against duplicate data being
saved up.

C. Data De-duplication is critical for removing redundant data and lowering storage
costs.

The quantity of data generated is growing exponentially in quickly developing
digital age. The demand for more storage space has grown as more areas of life, from
social media interactions to business transactions, are becoming digitalized. This
article looks at how inadequate present storage capabilities are for keeping up with
the rate of expansion in digital data and the significance of finding a solution.

° Delete this line, comment solved.

° A Partial Solution: The increased need for storage space has a partial solution
in the form of cloud storage. Cloud service providers can offer scalable storage
options to consumers and businesses by utilising the enormous capabilities of data
centres. This method, however, has its own set of drawbacks, such as worries about
data privacy, security lapses, and dependence on outside sources [9]. Additionally,

32

CHAPTER TWO THEORETICAL BACKGROUND

the cost of storing significant amounts of data on the cloud can rise significantly,
particularly for long-term retention.

° Explosive Growth of Digital Data: The internet's rising use, the widespread
use of smartphones, and the rise of connected gadgets have all contributed to the
digital revolution's data explosion. The amount of digital data is always growing
because of all online interactions, transactions, sensor readings, and media uploads.

° New Technologies for Data-Intensive Systems: The problem with storage is
made worse by the emergence of data-intensive technologies like artificial
intelligence (Al), machine learning (ML), and big data analytics. Massive datasets
are needed for these applications in order to build models and gain insightful
knowledge. Additionally, the growing use of virtual reality, augmented reality, and
high-definition multimedia content puts extra pressure on storage infrastructure by
necessitating higher capacity and quicker data retrieval.

The lack of storage capacity is becoming an urgent issue as the digital world
develops. Finding scalable and effective storage solutions is urgent given the
exponential growth of digital data and the rising demand for data-intensive
applications. While cloud storage provides a partial solution, research into next-
generation storage systems is necessary to make sure that the storage infrastructure
can sustain the ever-growing digital world [11]. It can fulfil the increasing need for
storage space and unleash every advantage of the digital age by making investments
in technology development and promoting innovation.

The problem of redundant information has grown significantly in importance in the
era of expanding digital data. Traditional storage solutions frequently do not have
built-in duplicate data management tools. The significance of data deduplication in
eliminating redundant data and lowering storage costs is highlighted in this article.

Duplicate data refers to information that is identical and spread across different
locations in a storage system. It may be caused by a number of things, including user
error, system backups, or data replication procedures [13]. Duplicate data not only
takes up valuable storage space, but it also drives up prices, slows down data
retrieval, and uses resources inefficiently.

33

CHAPTER TWO THEORETICAL BACKGROUND

Hard disc drives (HDDs) and solid-state drives (SSDs), two common types of
traditional storage, lack built-in techniques for locating and removing duplicate data.
Organisations can considerably reduce their storage needs by getting rid of duplicate
data. However, ensuring that only one copy of each piece of information is stored,
data deduplication increases data efficiency. Enhancing data integrity means
reducing duplicate data [14]. Duplicate data can cause conflicts and inconsistencies,
jeopardising the accuracy and dependability of data that is kept. Disaster recovery
procedures might be hampered by duplicate data since it increases backup and
restore times. In today's data-driven world, adopting data de-duplication is essential
for effectively managing and maximising the value of digital data.

2.2.3 Process of Data

A method known as "data deduplication” may be used to get rid of multiple copies
of data that is repeated. You may also know it by the name Single Instance Storage.
There are two distinct methods of deduplication, which are referred to respectively
as deduplication at the file level and at the block level [50]. While deduplication at
the file level takes into consideration the whole file, deduplication at the block level
applies deduplication to data blocks using hashing methods.

34

CHAPTER TWO THEORETICAL BACKGROUND

Registration

N|
v

Login
No 1
File
Upload
Check Download Upload P - No yploadin
Authentication 45 . Deduplication clotid
Downlo
ad
Yes l Yes l
Download File Access Denied

Figure 2.2: Deduplication Flowchart [51]

The figure 2.2 deduplication flowchart effectively displayed the process of data
optimization through applying deduplication procedures. The procedure starts with
the registration process from the end of users. Users provide various primary and
well-organised information about themselves or their organisations in order to
register themselves into the cloud storage system. The successful registration takes
them to the login page of the cloud storage system. The users are required to provide
their login id and password in order to access their data stored in the database. The
login id and password is used to ensure the safety and privacy of all the stored data.
However, if the registration process of the user fails then the user is asked to re
authenticate their credentials and basic information. The successful login using the
correct credentials take the users to the upload and download section. Downloads of
the stored files require authentication from the system. Users can download the
asked files if they are authenticated to do so. However, if the user wants to upload a
file in the cloud storage then the duplication of the file will be checked. The access
Is denied if any kind of duplication is found on the provided file. Cloud storage
systems grant the permission to upload any new file if no duplication is found on the
provided file.

35

CHAPTER TWO THEORETICAL BACKGROUND

2.3 Purpose of Data Deduplication

It is crucial to eliminate duplicate data within a dataset for efficient management of
data and save storage space. Therefore, it can be said that data De-duplication helps
enhance the integrity of the data while improving the system's performance as well.
In order to get an in-depth picture of the significance of data De-duplication, here
are some key points explained in details:

1) Optimization of System Storage:

After reviewing other studies on this subject, it has been understood that not only
duplicate data takes up unnecessary storage space, but also hampers the overall
system performance. Data De-duplication identifies duplicate data and files in
the device, and removes them to make space for other important data. Examples
of data De-duplication in real world scenarios can be found in backup systems,
archives, and cloud storage. These services use data De-duplication to prevent
data redundancy while improving the data retention capabilities of itself.

2) Bandwidth Conservation:

Bandwidth conservation becomes a key factor when data is to be transferred
across domestic networks. It also becomes crucial while data backup to different
locations (offsite). The Data Deduplication comes in use in this case selectively
remove repetitive data prior to the transfer. This is done so that the data that is to
be transferred is reduced in size, and only takes up space that is crucial for the
core dataset. However, this also helps in faster transfer of the data, lower
bandwidth needed for the transfer of data, and lesser network traffic.

3) Data Governance Regulations and compliance of them

Government has placed several strict regulatory compliance measures on
companies and industries regarding data handling. In such cases, data
deduplication comes into play by helping companies meet most of these
regulations. Additionally, it also helps in "data tracking" efficiently, and helps to
follow the data governance practices as prescribed.

36

CHAPTER TWO THEORETICAL BACKGROUND

4) Data integrity and Data loss:

Data De-duplication can improve the integrity of the data and confirm only one
version of each data to exist in the data set It is important to avoid any sort of
duplication of data as they can cause errors and inconsistencies. If in any
circumstances, there is data loss, data de-duplication makes the data recovery
process much simple. It also ensures that there are less risks of data corruption
and faster process of system restore.

The expenditures that are connected with duplicated data may be reduced by storage
managers with the assistance of data de-duplication. When dealing with large
datasets, it is common to find a significant amount of duplication, which drives up
the cost of storage. As an example:

@ |It's possible that different users' file sharing includes several copies of the
same or similar files.

@ Virtualization guests may often be almost exactly the same from one VM to
the next.

® There may be some variation from one day to the next in the backup
snapshots.

The dataset or the workload on the volume will determine the amount of space that
can be saved thanks to data de-duplication. High-duplication datasets have the
potential to reach optimization rates of up to 95%, which would result in a 20-fold
decrease in the amount of storage space required. The following table provides a
summary of typical cost reductions that may be achieved by de-duplication of
different categories of material:

Table 2.1: Data De-duplication Scenario & Typical space savings

Scenario Content Typical space

37

CHAPTER TWO THEORETICAL BACKGROUND

savings
User documents | Office documents, photos, music, 30-50%
videos, etc.
Deployment Software binaries, cab files, 70-80%
shares symbols, etc.
Virtualization ISOs, virtual hard disk files, etc. 80-95%
libraries
General file share All the above 50-60%

2.4 Chunking Algorithm

Chunking is referred to as the process of splitting file into smaller units where
efficient chunking is one of the key elements that provides an estimation of the
deduplication performance. Chunking is important in certain applications such as
data compression, data synchronisation, as well as data duplication as it helps in
determining the duplicate detection performance of the system. Subsequently, in the
perspective of the cloud storage ecosystem and about data duplication chunking is
of two types that are fixed size and variable size. The chunking process is beneficial
in breaking the data input stream into smaller pieces or chunks where the chunking
method is the first stage of the deduplication system. A chunk is the largest physical
disc unit dedicated to storing database server data.

Chunks give managers a much larger unit to work with when allocating disc space.
An individual chunk can be up to 4 TB in size. The maximum number of chunks
allowed is 32,766. If you upgraded from a version prior to version 10.00, you must
perform the on-mode BC2 command to enable the maximum chunk size and
maximum number permissible otherwise, the maximum chunk size is 2 GB.

38

CHAPTER TWO THEORETICAL BACKGROUND

2.4.1 Storage areas made up of chunks

Dbspaces, or database spaces, act as logical storage containers in database systems,
consisting of chunks. Chunking divides the storage into manageable parts,
optimizing storage utilization and enabling flexible data management. In case of
corruption, only the affected chunk is impacted, minimizing the effect on other data.
Blobspaces are designated for large binary objects like images and videos. Chunking
breaks down these objects, enhancing data integrity and recovery. Managing large
binary data becomes more efficient as chunking ensures easier storage and retrieval
Segregated Buffer spaces store diverse data types within a single database,
categorized based on different criteria. Chunking allocates fixed-sized units,
facilitating easy access and parallel processing. It enables efficient storage utilization
and enhances database performance. Temporary spaces handle temporary data,
aiding query processing and sorting. Chunks store specific parts of temporary data,
allowing seamless management and deletion when data is no longer needed. These
specialized buffer spaces store only temporary data, like intermediate results.
Chunking optimizes storage by predetermining chunk configurations.

Files

t[3d] [leb] [34] : A ECT]) .
 ['sr | 28] [(s]) .
; == : : T i
Chunking | pm { Indexing Unique Chunksi
|28 [8F |16 | & sStoring/ File A: { N W0 |

| FileB: { 3 @@
i Metadata

Figure 2.3: Chunking Algorithm [66]

Data deduplication is an emerging technology that involves the introduction of
reduction of storage use and is an important way of handling data replication in the
cloud storage mechanism. It can be mentioned here that data deduplication involves
three basic components that are chunking, hashing, and comparing hashes in order
to detect redundancy. A chunking algorithm is considered the first step in achieving
efficient data duplication ratio and throughput, certain unique hash identifiers are
implemented to draw a comparison between the chunks between the current to that
of the previously stored ones.

39

CHAPTER TWO THEORETICAL BACKGROUND

2.5 Hash Value (HV)

A hash value is identified as a numeric value of a definite length that uniquely
defines data. The hash value generally represents a large range of data in the form
of much smaller numerical values in order to make it eligible to be used with digital
signatures. The utility of hash value is significantly higher than in comparison to the
original larger value and is important in verifying the integrity of the data that has
been transmitted through non secured channels. Generally, data is hashed at a
definite time along with ensuring its value is protected at the same time.

Different hash function values are allocated to various slices or chunks of data and
after comparing a hash value (HV) with all other slices, the updated hash values are
returned. This procedure is reiterated until the value convergence of assignment to a
state of no change. A numeric number of a predetermined length that may be used
to uniquely identify data is referred to as a hash value. Hash values are employed in
digital signatures because they can represent enormous quantities of data with much
smaller numeric values. This makes them useful [40].

Hashes are generally identified as the output of a hashing algorithm where the
primary objective of these algorithms is to produce a unique, fixed-length string —
the hash value, for a given piece of information or data. The hashing algorithm
prevents the reconstruction of a file’s content and therefore, validates and evaluates
the content of two different files along with maintaining privacy and without
acquiring any information about the contents. Hash values are significant to security
searches and are important in evaluating the queries related to a particular dataset
over an existing network, it also helps in the early identification of threats.

A hash value (HV) usually requisites a particular number of bits, and when
subsequent chunks of data search for and locate chunks with the same hash value;
the chunks are viewed as duplicate data and aren’t kept in the data de-duplication
(DD) procedure. If the hash value (HV) is unique and not existing among previously
recorded values, the hash value is saved, and the matching data chunk is examined
and saved in databases (DB).

40

CHAPTER TWO THEORETICAL BACKGROUND

Updated Hash

Hash
2 Value

Slices Value

New
Slices

X,
X e 2 % X,
1
1 — b . 5 1,
‘7[.
v
Y —> Y 5 X
Z Zy K K,
5 e
2y
2
2 L 2 h
L R T T Tu
—
4
4 . 9
> 5 9%

Figure 2.4: Hash value

Cloud storage has evolved as one of the leading options to store huge amounts of
data; however, the hash value is also the representation of a longer document from
which it was computed. The contents of a file is processed through the
implementation of a cryptographic algorithm where a unique numerical value is
generated and identified as a hash value. Hash values are important as they can be
used to assess data of various sizes into a limited fixed size value. Hash values are
deterministic along with being efficient in adapting to any change in the input
thereby incorporating it in the output.

41

CHAPTER TWO THEORETICAL BACKGROUND

2.6 Dynamic Prime Chunking

The process flow of the chunking method, in addition to its primary and essential
gualities. Dynamic Prime Chunking is a sophisticated data management technique
designed to optimize storage efficiency and enhance data retrieval processes. Unlike
traditional chunking methods, DPC dynamically adjusts the size of data chunks
based on the content being processed. This adaptability ensures that chunks are of
optimal size, preventing both underutilization and excessive fragmentation of
storage space. By intelligently resizing chunks according to the data's nature, DPC
Improves storage utilization, accelerates data access, and minimizes storage wastage.

2.6.1 Dynamic Prime Chunking Design

The Dynamic Prime Chunking does not have a fixed size of sub problems, or chunks,
and reduces computational cost. They are subjected to dynamic changes that depend
on various heuristics. In simpler words, those algorithms can modify the size of the
chunks depending on various factors, including the input number's properties and
computational resources available onsite.

C C, C; C4

backet 1 2,32, 233445 a4a,ag a,

E l_'_} \;' J L Y J

: chunking

045 AR S R S

T —— P —— e

: c') c'y c's e4

ba,a, 2,348, a524a, gy
packetZE \) \ ;) L y)

i chunking

I ———

Figure 2.5: Fixed size chunking of data packet

Dynamic prime chunking algorithm aims to maintain a balance between memory
usage of the data, and the "computational efficiency" [52]. Breaking the problematic
bigger chunk into smaller chunks will dynamically reduce their size, making the
processing much more efficient, and also reduce memory space.

42

CHAPTER TWO THEORETICAL BACKGROUND

Step 1: Data Input Stream

Strat from |, I is the initial byte position of the data input string.

Step 2: Calculate the dynamic window size dw based on prime number.

Step 3: Finding the maximum byte position.

M is threshold value if, Chunk breakpoint determine the following two condition

1. The interval [I, N] is empty, or the value of M is greater than the values of all
bytes in the interval.

2. The value of M is not less than the values of all bytes in the interval [O, C]
Step 4: Declaring chunk boundary.
Return C as breakpoint I' is first byte of the remaining input string.

The version of AE that uses the dynamic prime chunking technique has been made
better. DPC is primarily applicable to two crucial qualities, namely position and
value. As can be seen in Figure 2.5, the DPC design process consists of four distinct
components. First, start by reading the data input stream coming from the source.
Begin at point I, where 1 is the beginning byte location of the data input stream. Start
from there. Following this, we go on to step 2 of the process, where we use steTp 3
to compute the size of the dynamic window (DW) using prime integers. DPC makes
use of two windows: one with a configurable size, and another with a dynamic
changing size. The algorithm decides whether the lowest or maximum value of the
input stream is the maximum value or the maximum value to use as the threshold
(M). The procedure will decide what the threshold value is, and it will always be the
highest or most extreme number. The third phase consists of determining the
maximum value for a byte and locating the border of a chunk based on the two
requirements that are listed below:

(1) To ensure that the interval [I, N] is also empty, or that the highest threshold
value of M is greater in significance than any of the byte values included
inside [I, N]J.

43

CHAPTER TWO THEORETICAL BACKGROUND

(2) In the dynamic window with a changeable size, the extreme value M must be
greater than the value of every byte that falls between the coordinates [O, C].

In order to ensure that the highest byte point is represented as the maximum local
value, it is necessary to assess whether or not the first byte satisfies the requirements
described above, which are related with a threshold value. On the other hand, the
maximum byte location has been established, and DPC has declared the byte that is
most to the right to be the chunk breakpoint for the right-side window [52]. The
algorithm will return the breakpoint location C once the chunk boundaries have been
specified in step four once they have been declared. After that, the sequence that
begins at the first byte location continues with the letter I. Repeat the methods from

the previous section until you locate the very last boundary of a chunk in the
incoming data stream.

2.6.2 Workflow of DPC

>
v

>
>
=
:<1
=
v

Y
mamic

z
bed
=
)
— =
L o9
v

v

v

-~

Figure 2.6: The workflow of DPC algorithm

In the example shown in Figure 2.6, the first byte position, which is indicated by the
letter A1, continues to advance in the correct direction until it reaches the end of the

44

CHAPTER TWO THEORETICAL BACKGROUND

byte position B. The threshold value M1 is used to partition the whole data stream
into several parts. The location of the leftmost byte, which comes before the
threshold, must thus be a window of variable size. M1 refers to the gap that exists
between each successive byte, beginning with Al and ending with X1. As the right
motion, the byte position is moved forward once again, this time from Y1 to B1. As
stated in Chunk 1, DPC is also a dynamic window with an adjustable width and
height. The precise procedure is carried out from chunk 1 all the way through chunk
N. The reason why there is a dynamic window is because the point at which the
chunks split is constantly changing in size. AE, on the other hand, just the left side
has a varied size; the right section remains the same throughout. As a result, the
effects will be felt greater in AE. In order to circumvent this problem, the DPC
technique that we've presented makes use of a variable window size. This helps to
get rid of the lengthy chunk sequence and boosts the deduplication throughput.

2.7 Content Defined Chunking (CDC) Algorithms

The term "content-defined chunking™ (CDC) refers to a technique for dividing files
into chunks of varying lengths, with the cut points being determined by the inherent
characteristics of the files themselves. In contrast to chunks with a set length, chunks
with a variable length are less susceptible to byte shifting.

Due to its strong redundancy detection ability, Content-Defined Chunking, also
known as CDC, has been playing a pivotal role in data deduplication systems for the
better part of the last 15 years. Existing CDC-based techniques, on the other hand,
result in a significant increase in the amount of CPU overhead. This is because the
chunk cut points are determined by calculating and evaluating the rolling hashes of
the data stream byte by byte.

The technique of chunking divides a single file into many smaller files that are also
called pieces. Chunking is significant in some applications because it impacts the
performance of the system in terms of duplicate detection. Some examples of these
applications are remote data compression, data synchronisation, and data
deduplication. The term "content-defined chunking" (CDC) refers to a technique for
dividing files into chunks of varying lengths, with the cut points being determined
by the inherent characteristics of the files themselves. In contrast to chunks with a

45

CHAPTER TWO THEORETICAL BACKGROUND

set length, chunks with a variable length are less susceptible to byte shifting [53]. As
a result, the likelihood of discovering duplicate chunks both inside a file and across
files is raised as a result of this. However, in order to locate the cut spots, CDC
techniques need extra calculation, which might be computationally costly for
particular applications.

A content-defined variable-length chunking method [52] is offered as a solution to
the issue of byte shifting in fixed-length algorithms. This algorithm reads files as a
data stream and creates chunks according to the Rabin fingerprint of a window data.
It has been suggested that the Rabin method use two divisors instead of only one in
order to overcome the problem that it is difficult to locate the cut-off point. Of the
two divisors, one is simple to do and the other is the complete opposite. The most
difficult divisor needs to be used right from the start when trying to locate an
appropriate stopping point. If the data cannot be fulfilled within a lengthy data
period, then it will be replaced by the easier one in order to prevent huge chunks of
data wherever possible. In addition to this, the Rabin fingerprint suffers from an
iIssue known as size variation of pieces. A technique known as LMC, or Local
Maximum Chunking, has been suggested as a solution to this problem . The method
comes to the conclusion that a cut-off point should be established if the greatest value
of awindow's data is located in the centre of the window. This allows the programme
to avoid the time-consuming process of generating the Rabin fingerprint. At the
same time, the size of the chunks may be restricted because the window size can be
set, and the distribution of the chunk size is reasonably constant. This is because the
window size can be set. AE [48] and RAM [35] are two techniques that have been
presented in order to expedite the process of validating the window data. Increasing
the speed of chunking may be accomplished by modifying the validation technique
of window data; this process will be discussed in more detail later on. In addition,
the concept of parallel computing is used to the algorithms that are used for data
chunking in order to make the process move more quickly.

2.8 Types of Chunking Algorithm

2.8.1 Rabin chunking Algorithm
Input: input file,file; default value,Value;length of sliding window, W; Output: cut
point,l;

46

CHAPTER TWO THEORETICAL BACKGROUND

function RabinChunking(file,Value, W)
=1

index=0

while(byte=readByte(file))
array[index%W+1]=byte

if array.length>=W then

else

if hashValue(array,index, W)==Value then
return i

end if

continue

end if

=i+l

end while

end function

The Rabin chunking algorithm is also popularly known as "Rabin Fingerprinting
Algorithm™ which was developed back in 1981, by Michael O. Rabin. This system
Is very helpful when it comes down to breaking the data into smaller, and fixed size
chunks. This breakdown of the data depends on their data content. Therefore, it is
clearly suggested that it is a technique used in de-duplicating data.

This algorithm apparently creates a "rolling hash function”. This function then
proceeds to calculate each of the data block's hash value, which is most popularly
known as a fingerprint of the data as well [54]. This fingerprint plays a crucial role
in identifying duplicate data chunks on the data, which are similar to one another.
Therefore, it is understood that any small change made in the data itself can result in
different hash values.

Sliding window approach is used in this type of algorithm to perform chunking. An
initial data window starts the process, and calculates that window's hash value at the
same time After the calculation is done, the algorithm shifts the window position by
one byte, only to calculate the hash value for the new position of the window. The
goal of this is for the hash value to satisfy certain criteria.

The Rabin Fingerprinting Algorithm is capable of identifying duplicate data chunks
within a larger dataset in a more efficient way. [56] This comes in use in the case of

47

CHAPTER TWO THEORETICAL BACKGROUND

backing up specific chunks of data to save space in the storage device. The Rabin
chunking algorithm can compare the hash values in order to recognise the duplicate
data chunks even if data blocks are somewhat dissimilar.

However, one of the biggest disadvantages of this algorithm is that it can give false
results [55]. For instance, it might show the result as false positive, which can happen
when coincidently, two completely different data blocks produce the same hash
value, therefore they can be flagged as duplicate data. Similarly, false negative
results occur when unfortunately, two of the same blocks of data show different hash
values.

2.8.2 LMC Chunking Algorithm

Output: cut point,I;

function LMCChunking(file, W)

i=1

start=1

while(byte=readByte(file))

if byte<=max.value then

If i==max.position+w and max.position>=start+w then

end if

start=max.position+1

return max.position

else

max.value=byte

max.position=i

end if

=i+l

end while

end function

The LMC, or Lesk's Measure of Cohesion Chunking Algorithm was Introduced in
1986 by Michael Lesk. It is essentially a language processing technique, which can
detect meaningful chunks from a text. This technique calculates the Cohesion scores
of every word present in a text . This calculation is primarily done by examining the
overlap of the context of one word to its immediate next word. These contexts are a
group of words in a window, which has a fixed size around the main word.

48

CHAPTER TWO THEORETICAL BACKGROUND

The use of this algorithm is mainly found in extracting information or parts of speech
tagging, etc. The identification of valuable chunks and extracting them from a text
allows in-depth understanding of the chunk's content. Thus, the LCM Algorithm can
assess the relationship shared between words by analysing their context, which
results in accuracy in identifying chunks.

2.8.3 Asymmetric Extremum (AE) Chunking algorithm

Algorithm for AE chunking Input: input file, file; size of fixed window, W; Output:
cut point,l;

function AEChunking(file, W)

i=1

while(byte=readByte(file))

If byte<=max.value then

If i==max.position+w then return i

end if

else

max.value=byte

max.position=i

end if

=i+l

end while

end function

This algorithm looks for phrases, which appear to be important. This decision is
based on external factors such as the high level of information of the word, in
comparison to its neighbours. AE chunking algorithm reduces traffic redundancy to
be more efficient. After Tokenization, the features of each word, such as syntactic
patterns and parts of speech tags are computed.

The algorithm then proceeds to group words with best external features to form
something meaningful. Therefore, the AE chunking algorithm group’s words that
have the appearance of being informative to make a meaningful phrase, and this is
in use while extracting keywords from a text or retrieving information.

2.8.4 RAM Chunking Algorithm

function RAMChunking(file, W)

i=1

49

CHAPTER TWO THEORETICAL BACKGROUND

while(byte=readByte(file))
if byte>=max.value then
if i>w then

return i

end if

max.value=byte
max.position=i

end if

=i+l

end while

end function

"RAM or Rapid Asymmetric Maximum Chunking Algorithm™ is a helpful approach
for the identification and segmentation of handwritten text in a phrase [56]. The
RAM chunking algorithm was developed so that the accuracy of the segmenting of
the handwritten characters increases [54]. In order to be able to achieve this goal, the
RAM chunking algorithm uses a group of image processing systems, known as
"threshold-based image processing™ It helps to overcome challenges posed by the
overlapping strokes of the character, their irregular sizes, etc. The use of
asymmetrical chunking (smaller chunk) is Done by detecting the physical features
such as strokes and slants.

2.9 Secure Hash Algorithm

Secure Hash Algorithm (SHA) are a kind of cryptographic function that is used to
keep data secure. It transforms data using a hash function, which is a method
composed of bitwise operations, modular additions, and compression functions. The
hash function then returns a fixed-length string that has no resemblance to the
original. These methods are meant to be one-way functions, which means that once
they've been translated into their corresponding hash values, it's almost hard to
reverse the process. SHA-1, SHA-2, and SHA-3 are three algorithms of interest, each
of which was built with ever better encryption in response to hacker attempts.
Because of publicly publicised weaknesses, SHA-0, for example, is now outdated.
[56]

50

CHAPTER TWO THEORETICAL BACKGROUND

SHA is often used to encrypt passwords since the server just has to maintain track
of a single user's hash value rather than the actual password. If an attacker steals the
database, they will only obtain the hashed functions and not the real passwords,
therefore if they enter the hashed value as a password, the hash function will turn it
into another string and prohibit access. Furthermore, SHAs display the avalanche
effect, in which changing a few characters in an encrypted string generates a large
change in output; or, conversely, vastly dissimilar sequences give comparable hash
values. As a result of this consequence, hash values do not provide any information
about the input text, such as its original length. Furthermore, SHAs are used to
identify data tampering by attackers; for example, if a text file is slightly altered and
hardly apparent, the modified file's hash value will be different from the original
file's hash value, and the tampering will be rather obvious.

There are several advantages and disadvantages of using Secure Hash Algorithm-1.
The primary advantage of using SHA-1 algorithm is it reduces the risks of brute
force attack by the hackers. It is useful for storing the passwords, as it is a very slow
process. It is also used to compare codes or files in order to identify the
“unintentional only corruptions”. It also has the capability to replace the SHA-2
when the matter of interoperability issue is noticed with the legacy codes. However,
it also suffers from various drawbacks including it is less secure as compared to other
algorithms. The collision is extremely easy to find in the SHA-1. The length of the
key in the SHA-1 is too short to resist the potential attacks. It is not suitable for uses
other than storing the passwords, as it is slow in nature.

Fox | Hash function |, DFCD3454

The red fox
runs across the .| Hashfunction [.| 52948763
ice
The red fox
walks across |=——» Hash function |~ 46042841
the ice

51

CHAPTER TWO THEORETICAL BACKGROUND

Figure 2.8: Hash function
29.1SHA -1

It is a 160-bit or 20-byte long hash-based function-based encryption technique that
Is used to mimic the MD?5 algorithm, which has been around for a while. The NSA,
or National Security Agency, conceived and developed the specific algorithm, which
was intended to be part of the crucial component- Digital Signature Algorithm
(DSA). Weaknesses in cryptographic methods were discovered in SHA-1; the
encryption standard was eventually discontinued and was hardly used.

SHA-1 generates a 160-bit hash value or message digests from the inputted data
(data that needs

encryption), which is similar to the MD5 hash value. To encrypt and protect a data
item, it performs 80 rounds of cryptographic procedures. SHA-1 is used in a number
of protocols, including:

e Transport Layer Security (TLS)

e Secure Sockets Layer (SSL)

e Pretty Good Privacy (PGP)

e Secure Shell (SSH)

e Secure/Multipurpose Internet Mail Extensions (S/MIME)
e Internet Protocol Security (IPSec)

SHA-1 is widely employed in cryptography applications and contexts where data
integrity is critical. It is also used to index hash functions, as well as to detect data
corruption and checksum issues.

The SHA-1 or the “Secure Hash Algorithm 1" is considered the cryptographic
algorithm that includes the input and produces a 160-bit hash value. This hash value
is called the “message digest” which usually is rendered as a kind of hexa-decimal

52

CHAPTER TWO THEORETICAL BACKGROUND

number that is 40 digits longer. It is also considered to be in the “US Federal
Information Processing Standard" and was said to be designed by the “United States
National Security Agency” [57]. The SHA-1 is presently considered to be insecure
since the year 2005. The giant technical browsers which include Google, Microsoft,
Mozilla and Apple have prevented accepting SHA-1 SSL certificates by the year
2017. The requirements to calculate the graphical value is included in Java where
the “MessageDigest class” is utilised under the package for “java.security”.

This class offers various cryptographic hash functions, including MD2, MDS5,
SHA1, SHA224, SHA256, SHA384, and SHA512, which can be utilized to compute
the hash value of a given text. These algorithms can be initialized using the static
method "getinstance()". Once an algorithm is selected, the message's digest value is
calculated, and the results are returned as a byte array. To convert this byte array
Into a readable format, the class utilizes "Biglnteger". This conversion enables the
representation of the signal, which is then further converted into hexadecimal format
to obtain the expected result from the message digest.

These algorithms could be used in several forms such as:

1) Cryptography: The primary application of SHA-1 is to provide protection to the
communication from being interrupted by parties from outside. It generates
singular, irreversible and fixed size values. The data integrity can also be
confirmed through the comparison of this hash value with the original hash value
[57]. It also makes it easy in confirming that the data that is used is not tampered
or changed with the manner during the transmission of the data.

2) Digital Forensics: The hash value of a file that includes the digital evidence can
be manufactured making use of the SHA-1 algorithm in the digital forensics.
This also helps in ensuring that the evidence has not been changed during the
process of investigation using the hash value as a type of proof [58]. It also
proves that the file is not altered if the hash value for the original file and the file
of evidence matches.

2.9.2 SHA-512

There are multiple applications of hash functions in the digital environment.

The mechanism applies to internet security, block chains and others. The hashing

53

CHAPTER TWO THEORETICAL BACKGROUND

algorithm constitutes a one-way program (). The primary advantage of such a type
of algorithm is it cannot be restructured and decoded. Therefore, if any third party
gets access to the server, the entire data remains unreadable. The Hashing algorithm

holds the following properties in brief.

a. Mathematical - It maintains strict rules to design the algorithm.

b. Uniform - All hashing programs are uniform in nature. Whatever be the length
of the data it produces a fixed length of output.

c. One way - Once it is created, it will be nearly impossible to decode it.
Therefore, it is secure for programmers as well as users.

d. Consistent - A hashing program only one process that is compressing the

given data.

SHA-512 works in the following manner -

1) Input Formatting It has an input size limitation. SHA - 512 can not execute an

input of any size. The entire message constitutes three parts namely - original
message, padding bits and the size of original message. The message will be
executed as blocks of 1024 bits.

2) Hash Buffer Initialization 1t is already mentioned that the process works with

a block of 1024 bits and collects from the previous blocks. However, it
generates a problem for the first 1024-bit block, therefore, it is unable to use
the result from the previous block. This problem can be solved by providing a
default value to the first block in order to start the process. The intermediate
results will be used in the next block. Therefore, the result should be stored
somewhere for later use. This will be done by the hash buffer.

3) Message Formatting It takes one block of 1024 bits at a time and message

formatting is done on it. The actual execution is done by using two things that
is a block of 1024 bits and the result from the previous processing.

4) Output After the message-processing phase we get a 512-bit hash value for

the original message. From each block, intermediate results are used for
processing the next block. When the execution of the final bit of 1024 is
finished, we get the result of the SHA 512 algorithm.

54

CHAPTER TWO THEORETICAL BACKGROUND

SHA-512 is a function of the cryptographic algorithm SHA-2, an extension of the
well-known SHA-1.

SHA-512 is essentially similar to Sha-256, except that it uses 1024 bit "blocks" and
accepts a maximum length string of 2128 bits as input. In addition, SHA-512 differs
from Sha-256 in terms of algorithmic alterations.

A cryptographic hash (also known as a 'digest') is a kind of ‘signature' for a text or
data file. For a text, SHA-512 provides a nearly unique 512-bit (32-byte) signature.
The source code is available below.

This is a companion script to the SHA-256 script (which has more information). This
Is a reference implementation, as close to the NIST specification as possible, to aid
in understanding the algorithm (section numbers relate the code back to sections in
the standard); it is not at all optimized (in timing tests, using Chrome on a low-to-
middle Core i5 PC, this script will hash a short message in around 0.4 - 0.6 ms;
longer messages will be hashed at a speed of around 0.5 - 1 MB/sec).

Because SHA-512 is based on 64-bit unsigned integers, which JavaScript does not
natively handle, it is more difficult to implement in JavaScript than SHA-256. For
an optimised implementation, I've developed a long library for UInt64 operations;
there would be more efficient ways of accomplishing this.

2.10 Dataset

The research utilizes two primary datasets, each offering unique insights and data
characteristics. These datasets are integral for conducting comprehensive
evaluations and comparisons of various cloud storage solutions, providing a robust
foundation for the benchmarking process.

55

CHAPTER TWO THEORETICAL BACKGROUND

2.10.1 Multimedia and OS Datasets

Multiplicative-Divisive Probabilistic Congestion Control (MDPC) is a congestion
control algorithm used in computer networks. It is designed to control the rate at
which data is transmitted over a network to avoid congestion.

To implement MDPC, the researcher will need the following:

1. Operating System: MDPC is a congestion control algorithm that can be
implemented on any modern operating system, such as Windows, Linux, or macOS.

2. Network stack: The MDPC algorithm operates at the transport layer of the
network stack. It requires access to the congestion control module of the network
stack to be able to control the rate at which data is transmitted.

3. Multimedia support: MDPC is designed to handle multimedia traffic, which
includes audio and video streams. Therefore, the operating system and network stack
must support multimedia traffic.

4. Hardware requirements: The hardware requirements for MDPC depend on the
size and complexity of the network. In general, MDPC can be implemented on any
modern computer hardware with a network interface card (NIC).

5. Software requirements: To implement MDPC, the researcher will need to install
the congestion control module that supports the MDPC algorithm. This module can
be a part of the operating system or a separate software package that needs to be
installed.

To implement MDPC, the researcher needs a modern operating system and network
stack that support multimedia traffic, as well as hardware with a network interface
card. Additionally, he or she need to install a congestion control module that
supports the MDPC algorithm.

The researchers have conducted several studies on MDPC and have found that the
alternative systems that are asymmetric in nature other than the traditional systems
impact the “McEliece cryptosystem”. The system of McEliece is considered to be
based on the codes of “QC-MDPC” that is considered to have an extremely

56

CHAPTER TWO THEORETICAL BACKGROUND

interesting contribution since it has excellent performance on the limited sources and
embedded systems. This code also extends the concept of lower density with a parity
check that makes use of a certain matrix that checks the parity with the moderated
sparse [44]. This also leads the procedure to a significantly degraded performance
of error correction. The MDPC decodes certain instances that attempt to decode the
complicated coding. The random parity check matrix and the random error factor
are considered to be generated through the computer corresponding syndrome. It
prints the instances every five seconds that are generated and distributed with the
number of iterations it will be required to decode.

The MDPC codes are considered the LDPC codes of greater density than the usually
adopted applications for telecommunication. This also leads to worse means of error
correcting capability. However, the cryptography based on the MDPC code is not
interested in correcting several errors but only a specific number of errors that ensure
and the level of security that is a condition, which is satisfied by the codes of MDPC.
The benefits of using the MDPC code include many benefits. The MDPC codes
reduce the distinguishing problems related to McEliece, which includes the problem
of decoding the codes that are linear [44]. The attacks of message against the scheme
Is also required in reducing the problem along with the security of providing the
scheme that has the benefit of reliance on a single and well-studied problem
regarding the coding theory

57

CHAPTER THREE

Proposed Mechanism

CHAPTER THREE PROPOSED MECHANISM

CHAPTER -3

Proposed Mechanism

3.1 Introduction

This chapter presents the research methodology for the proposed model for cloud
0T environment. The efficient algorithm for constrained l1oT devices was covered
in detail in this chapter. It began with an overview of lightweight efficient cloud
storage and its inherent difficulties, which were presented in sections 3.1 and 3.1.2.
The overview of the efficient algorithm then provided in section 3.4, highlighting
the two-step process of 10T device authentication and resource-efficient message
encryption. The efficient AES-based algorithm's implementation pseudocode is
shown, and it describes the encryption and decryption procedures as they are

described in sections 3.5 and, respectively.

3.2 Design Research Methodology

The Design Research Methodology for thesis on 10T and cloud storage focuses
on developing an efficient, scalable cloud storage system for 0T environments.
approach involves a comprehensive examination and integration of various
components. Firstly, analyse the dataset and simulation tools used, ensuring
compatibility with 10T requirements. The operating system is chosen for optimal
performance in processing 10T data. A significant part of methodology includes the
adoption and modification of algorithms, notably Content-Defined Chunking (CDC)
and standard chunking algorithms, tailored to enhance data processing and storage
efficiency. The system architecture is designed with specific considerations for 10T
applications, ensuring seamless integration and operation. Additionally, we assess
software requirements, benchmarking standards, and design goals to ensure research

meets the evolving needs of 10T environments. This methodology aims to create a

59

CHAPTER THREE PROPOSED MECHANISM

robust, adaptable cloud storage solution, addressing the unique challenges in loT

data management.

3.3 MDPC Algorithm and Difference with DPC

MDPC (Multiplicative-Divisive Probabilistic Congestion Control) and DPC
(Deterministic Probabilistic Congestion Control) algorithms both aim to manage
network congestion, yet they differ in their approach. MDPC operates by
probabilistically increasing or decreasing the congestion window size based on
network conditions, utilizing multiplicative and divisive factors to adjust the window
size dynamically. In contrast, DPC employs a deterministic approach, where the
congestion window size is adjusted based on predetermined thresholds and
probabilities, without the multiplicative and divisive factors utilized in MDPC.
While MDPC offers adaptability to varying network conditions through probabilistic
adjustments, DPC provides deterministic control over congestion window size

changes, potentially offering more predictable behavior in certain network scenarios.

3.3.1 Dynamic Programming with Clustering (DPC) Algorithm

The DPC algorithm combines dynamic programming with clustering
techniques to reduce the computational complexity of solving optimization problems
with large state spaces. It involves the following steps:
1) Clustering: Initially, the state space is divided into clusters based on certain
similarity measures. Clustering helps in grouping similar states together, reducing
the overall size of the state space. Like DPC, the state space is initially partitioned
into clusters using clustering techniques. Clustering helps in reducing the complexity
of the problem by focusing on smaller, manageable subsets of the state space.
2) Dynamic Programming within Clusters: Within each cluster, dynamic

programming techniques are applied to find the optimal solution. By solving smaller

60

CHAPTER THREE PROPOSED MECHANISM

subproblems within clusters, the computational complexity is reduced compared to
solving the entire problem space.

3) Inter-Cluster Communication: Information exchange or communication
between clusters is facilitated to ensure coherence and consistency in the final
solution. Inter-cluster communication can involve sharing boundary information,

optimal policies, or other relevant data.

3.3.2 Multi-Point Dynamic Programming

Dynamic programming techniques are applied to each cluster independently to
find the optimal solution within each cluster. The dynamic programming process
considers multiple decision points or stages, allowing for sequential decision-

making.

3.3.2.1 Inter-Cluster Communication

Similar to DPC, communication between clusters is essential to ensure
coherence and consistency in the final solution. Inter-cluster communication
involves sharing information about optimal policies, boundary conditions, or other
relevant data. This method involves a detailed comparison and contrast of existing
cloud storage systems, examining their various features and performances. The core
of this methodology is the development and application of a specialized
benchmarking tool designed for assessing the efficiency, flexibility, and user-
friendliness of cloud storage systems. In the initial stage, the research involves
gathering data about various cloud storage solutions currently available. This step
includes examining the infrastructure of these systems, understanding their data
organization, storage capacities, scalability, and the nature of their virtualized
storage environments. This examination helps in identifying the key characteristics

that impact the performance and cost-effectiveness of these services. The research

61

CHAPTER THREE PROPOSED MECHANISM

moves to a critical comparison of these cloud storage solutions. This comparison is
not merely theoretical; it involves practical analysis based on specific parameters
such as storage capacity, scalability, ease of access, and cost-efficiency. The focus
Is on how these systems manage and maintain data, their ability to scale up or down
based on user requirements, and the overall user experience in terms of managing
and accessing stored data.

An essential part of the methodology is the creation of a benchmarking Concept.
This Concept is designed to test operational cloud storage systems, evaluating them
on various performance metrics. The tests conducted using this tool are critical in
assessing the efficacy of the cloud storage systems under real-world conditions.
These tests are aimed at determining the systems' efficiency in data management and
retrieval, their response to varying storage demands, and their cost-effectiveness.
The research methodology also includes analyzing open-source cloud storage
systems through code analysis to obtain reliable results. This aspect is crucial as it
provides insights into the architecture and design principles of these systems,
contributing to a deeper understanding of their operational efficiencies. The research
methodology is a blend of theoretical study and practical evaluation, aimed at
providing a comprehensive analysis of cloud storage systems and developing an

effective benchmarking tool for their assessment.

62

CHAPTER THREE PROPOSED MECHANISM

Settingup, Algorithm i
parameters

|
|
|
|
|
| i
| i Parameters
| |
eSS - | |
| | s s |
} Design Research i > fis) = T 1 :
!'| Cloud-loT Methodology | | Algorithm >~ doud U Data e |
: ; —> o . L=< — = I
| | Environment MDPC-DPC } implementation - storage -~ . - : ! Dataset Utilization
| R < = — |

. -) |
| B _ . | |
| | |
e e) | |
f | No - .
| | | g
| | i 5
|

| o
| | > Result

Implementing Security | i

T yes

|
! Dataset collection - S Analysis
configuration e £

Figure 3.1: Flowchart Methodology
3.4 The Proposed System

The MDPC algorithm is a cloud storage mechanism that is designed to efficiently
manage and store data in loT environments. This algorithm is based on a
probabilistic approach that enables efficient utilization of cloud storage resources
while ensuring high reliability and availability of data. Multiplicative-Divisive
Probabilistic Congestion Control (MDPC) is a congestion control algorithm used in
computer networks to manage the flow of data packets and prevent congestion. It
operates by dynamically adjusting the congestion window size based on network
conditions. MDPC encompasses various subtypes or kinds, each with its specific
characteristics and approaches to congestion control.

Multiplicative Increase Divisive Decrease (MIDD): In this subtype of MDPC,
the congestion window size is increased multiplicatively when the network is
operating efficiently and there are no signs of congestion. However, when
congestion is detected, the window size is reduced divisively to alleviate the
congestion and prevent further packet loss. MIDD aims to strike a balance between

exploiting available network capacity and avoiding congestion.

63

CHAPTER THREE PROPOSED MECHANISM

1. Adaptive MDPC: Adaptive MDPC is a subtype that adjusts its congestion
control parameters dynamically based on observed network conditions. It
continuously monitors network metrics such as round-trip time (RTT), packet
loss rate, and available bandwidth to adapt its multiplicative and divisive
factors accordingly. By adapting to changing network conditions, adaptive
MDPC aims to optimize network performance and minimize congestion-
related issues.

2. Probabilistic MDPC: Probabilistic MDPC introduces randomness into the
congestion control process by probabilistically increasing or decreasing the
congestion window size. Instead of deterministic rules, probabilistic MDPC
utilizes probabilities to adjust the window size, allowing for more flexibility
and adaptability in response to varying network conditions. This approach
helps prevent synchronization effects and can lead to more stable network
behavior.

3. Delay-based MDPC: Delay-based MDPC focuses on controlling congestion
based on the observed network delay. It adjusts the congestion window size
proportionally to the measured delay, aiming to maintain an optimal level of
delay while avoiding congestion. By considering delay as a congestion
indicator, delay-based MDPC can effectively manage congestion in networks

with variable latency.

Overall, MDPC and its subtypes provide a flexible and adaptive approach to
congestion control in computer networks. By dynamically adjusting congestion
window sizes based on network conditions, MDPC algorithms aim to optimize
network performance, minimize packet loss, and prevent congestion-related issues.

Each subtype of MDPC offers unique features and capabilities, allowing network

64

CHAPTER THREE PROPOSED MECHANISM

administrators to choose the most suitable variant for their specific networking

environment and requirements.

Proposed Methodology for Cloud IoT Environment

A

-,

Intreduction }: Overview of lightweight efficient cloud storage challenges: b]

¢
b

|\ Design Research Methodology \}: Comparison of various algorithms for cloud storage; B]
v .
|/ General Proposed System Owverview /}=::1 Owverview of cloud storage service model; B]
_ v
|\ Algorithm Implementation }: Efficient AES-based algorithm for 10T device authentication and message encryption; 5
¥ _
|\ Dataset and Simulation \}: Use of multimedia and OS datasets, MDPC algorithm implementation; 5
_ ¥ _,
|/ Cperating System and MDPC Implementation /}: Application of MDPC in open-source data duplication system; %
|\ Performance Analysis \I-: Analyzing encryption times and efficiency of cloud storage solutions; ﬁ

|: Conclusion :|-=::: Summnarizing findings and implications for cloud storage in loT; B]

Figure 3.2: Design Research Mechanism

Programming language: MDPC can be implemented in a variety of programming
languages, including C, C++, and Python [59]. The choice of language would depend
on factors such as performance, ease of development, and existing code base.
Required libraries: The MDPC algorithm may require certain libraries, such as
(Multiple Precision Arithmetic Library) for high-precision arithmetic or OpenSSL
for cryptographic operations . Configuration and optimization: The performance of
the MDPC algorithm can be improved through various configuration and
optimization techniques, such as parallel processing, vectorization, and code
optimization. These techniques would depend on the specific implementation and

hardware used. Overall, running the MDPC algorithm requires a standard computer

65

CHAPTER THREE PROPOSED MECHANISM

system with modern hardware, an appropriate operating system and programming
language, and any required libraries and configurations for optimal performance.
The MDPC algorithm works by dynamically adjusting the storage capacity
allocation for each 10T device based on its data usage patterns and storage
requirements [73]. It achieves this by maintaining a probabilistic congestion control

mechanism that ensures that the available storage resources are optimally utilized.

3.4.1 MDPC Algorithm Works in Two Phases

1. Probabilistic Allocation: In this phase, the algorithm assigns storage capacity
to each device based on a probabilistic model that takes into account the
device's data usage patterns and storage requirements. The algorithm calculates
the probability of congestion for each device and assigns storage capacity
accordingly.

2. Dynamic Adjustment: In this phase, the algorithm monitors the data usage
patterns of each device and dynamically adjusts its storage allocation to ensure
optimal utilisation of the available resources. The algorithm also considers the
reliability and availability requirements of the data and ensures that the storage
capacity allocation is sufficient to meet these requirements.

The MDPC algorithm has several advantages over traditional cloud storage
mechanisms. First, it optimises the utilisation of cloud storage resources, which leads
to reduced storage costs. Second, it ensures high reliability and availability of data
by dynamically adjusting storage allocation based on data usage patterns. Finally, it
is highly scalable and can handle large numbers of 10T devices with varying data

usage patterns.

66

CHAPTER THREE PROPOSED MECHANISM

Overall, the MDPC algorithm is an efficient cloud storage mechanism for loT
environments that can help organisations reduce storage costs and ensure high
reliability and availability of data.
3.5 Simulation Used
A study has been implemented that focuses upon encryption algorithms

implemented by researcher Habeeb, Ahmed. (2018). Multiplicative-Divisive
Probabilistic Congestion Control (MDPC) algorithm is a variant of the Additive-
Increase Multiplicative-Decrease (AIMD) algorithm. It is used to control the rate of
data transmission in computer networks to avoid congestion [76]. MDPC adds a
probabilistic component to the AIMD algorithm to reduce the chances of congestion.
In this algorithm, the congestion window size is multiplied or divided by a factor
depending on the network conditions.

To perform configurations and settings of the MDPC algorithm, the researcher

will use the following algorithm and code:

Algorithm (3.1): Multi-Dimensional Partial Congestion Control (MDPC)

/lnitialize Variables

1. | Set cwnd (Congestion Window Size) to initial congestion window size

Set threshold to initial threshold value.

Set ack_counterto 0

Set nack_counter to 0

While true

if received_ack():

| Increment ack_counter by 1

end

if ack _counter > threshold
Multiply cwnd by 2 (Multiplicative Increase)
Reset ack_counter to 0
Reset nack_counter to 0

end

Else if received_nack()

|_\
Q

|_\
=

67

CHAPTER THREE PROPOSED MECHANISM

12: Increment nack_counter by 1
13:| |end
14: | | if nack counter > threshold
15: Divide cwnd by 2 (Divisive Decrease)
16: Reset ack_counter to 0
17: Reset nack_counter to 0
18: Set threshold to calculate_new _threshold(threshold)
19: Send data with congestion window size cwnd
20: | | end
21: | end
Where:

cwnd be the current Congestion Window Size.
threshold be the threshold value for determining congestion control actions.
ack_counter be the count of received acknowledgments.
nack_counter be the count of received negative acknowledgments (NACKSs).
Upon receiving an acknowledgment:
* [f ack counter > threshold:
cwndnew = cwnd x 2 (Multiplicative Increase).
Upon receiving a negative acknowledgment:
* [f nack counter > threshold:
cwndnew = cwnd/2 (Divisive Decrease).
Update threshold using a function to calculate a new threshold value.
* Send data using the updated cundnew
The MDPC algorithm helps in providing a number of options that include securing
the cryptographic exchange over the channel that is public with secure form of
messaging and digital signature. Most of these types of systems are included in the
number of the problems related to theory such as the factorization of the larger

number with the discrete form of algorithm in the elliptic curve. Strong form of

68

CHAPTER THREE PROPOSED MECHANISM

cryptography is considered extremely essential for providing a secured electronic
device for the consumers. These are the suspicious positions after the sleeping of the
tentative position of each of the candidates. The “Block Rate of Error (BLER)” is
also evaluated by simulation of the computer and the resultant represents the bit-
flipping algorithm that provides lower BLER that is compared in order to exist
within the algorithms of decoding.
3.6 MDPC Algorithm

MDPC (Multiplicative-Divisive Probabilistic Congestion Control) Algorithms
play a key role in the benchmarking process. They are designed to analyze cloud
storage systems from multiple dimensions, such as speed, reliability, and scalability.
These algorithms provide a comprehensive understanding of how each cloud storage

system performs under various conditions and workloads.

3.6.1 Mathematical Model:
1) Objective Function
Let f (x) be the objective function to be optimized, where X is the vector of decision
variables. The objective is usually either to maximize or minimize f(x).
2) Constraints
The optimization problem may have constraints that define feasible regions for the
decision
variables. These constraints can be represented as equality or inequality constraints,
denoted as

g(x)<0orh(x)=0 (3.1)
3) Decision Variables
Let x = (x1, X2,...,n) represent the decision variables. These variables determine the
solution to the optimization problem.

4, State Space

69

CHAPTER THREE PROPOSED MECHANISM

The state space represents all possible states of the system at any given point in time.
Each state

Is associated with a set of decision variables and constraints.

Mathematical Formulation:

Let's denote the following:

» S: State space representing all possible states of the system.

* A(s): Set of feasible actions or decisions available in state s.

* T(s, a): State transition function representing the probability distribution of
transitioning from state s to state s' after taking action a.

* R(s, a): Immediate reward or cost associated with taking action a in state s.

* V*(s): Optimal value function representing the maximum expected cumulative
reward from state s to the terminal state.

Q*(s, a): Optimal action-value function representing the maximum expected

cumulative reward from taking action a in state s and then following the optimal

policy.
The dynamic programming recursion for MPDP can be formulated as follows:
V*(s) =max {R(s, a) + X T(s,a, s") - V' (s")} (3.2)
The optimal action-value function Q*(s, a) is given by:
Q*(s, a) =R(s, a) +XT(s, a, s’) - V* (s") (3.3)

In the project, the Multiplicative-Divisive Probabilistic Congestion Control (MDPC)
algorithm serves as a pivotal component in optimizing data transmission and
managing network congestion effectively. Integrated within the project's
mathematical model, MDPC dynamically adjusts the congestion window size based
on real-time network conditions. Utilizing a probabilistic approach, the algorithm
detects congestion by calculating the probability of packet congestion, thus enabling

proactive measures to mitigate potential congestion events. By employing both

70

CHAPTER THREE PROPOSED MECHANISM

multiplicative and divisive factors, MDPC ensures adaptive control of the window
size: decreasing it by a larger multiplicative factor in the presence of congestion and
increasing it by a smaller additive factor during efficient network operation. This
dynamic adaptation to network conditions, including round-trip time, packet loss
rate, and available bandwidth, enables MDPC to maintain optimal performance and
efficiency. Evaluated within the project's benchmarking environment, MDPC
undergoes rigorous testing and comparison with other congestion control algorithms
to assess its effectiveness and suitability across various network scenarios. Overall,
MDPC significantly contributes to the project's objectives by enhancing multimedia
data processing and communication through efficient congestion management and
optimization strategies.
3.6.2 Properties MDPC Algorithm

The Multiplicative-Divisive Probabilistic Congestion Control (MDPC)
algorithm is a type of congestion control algorithm used in computer networks to
manage traffic congestion. Here are some key properties of the MDPC algorithm:
Multiplicative and Divisive Feedback: The MDPC algorithm uses both
multiplicative and divisive feedback mechanisms to adjust the congestion window
size . Multiplicative feedback increases or decreases the window size by multiplying
it by a factor greater or less than one, while divisive feedback divides the window
size by a factor greater than one.

1. Probabilistic Control: The MDPC algorithm is probabilistic in nature, meaning
that it uses probability to determine the congestion window size . This approach
iIs more effective in managing congestion in networks with high levels of
variability and uncertainty.

2. Feedback Signal Estimation: The MDPC algorithm estimates the feedback
signal based on the network conditions, such as the round-trip time, packet loss

71

CHAPTER THREE PROPOSED MECHANISM

rate, and available bandwidth . It then uses this estimate to adjust the congestion

window size.

?

X

|r Introduction }=::: Overview of Cloud 10T and Efficient Algorithm B]

y

——

s ™
| Design Research Methodology |-1 Comparison and Experimentation Analysisb]

e
| Methodology Stages f=::1 Cloud Storage, Data Management'ﬁ
¢ .] : N :
| Algorithm Overview |-=::] loT Device Authentication, Message Encryption E‘]
- . Y ; :
|l Implementation of Algorithm If=::] Encryption & Decryption Proceduresbw
F ¢ Y)
| Experiment Setup and Elements |-=::] Data Collection and Analysis t‘]
o . oy T — ,
| Efficient Security Algorithm }=::] Application in Cloud Storage and loT Devices b]
. Y —
Datasets Utilization = Multimedia, 05, and Other Relevant Datasets
fo]
P ¢‘ Y |
| Simulation of Algorithm |-=::] Practical Application in IoTI\—\]

i Y
| Results and Analysis }=::1 Performance and Efficiency Metrics H

v

e \
| Conclusion |-: Summary of Findings and Future Workt\]

"y

=S

Figure 3.3: 10T Cloud Benchmark Architecture

3. Fairness: The MDPC algorithm aims to provide fairness to all the flows
sharing the network resources [51]. It achieves this by adjusting the

congestion window size based on the number of flows and the amount of

traffic each flow generates.

72

CHAPTER THREE PROPOSED MECHANISM

4.

Stability: The MDPC algorithm is designed to be stable and avoid oscillations
in the congestion window size . This is achieved through the use of appropriate
feedback mechanisms and control parameters.

Scalability: The MDPC algorithm is scalable and can be used in large-scale
networks with a large number of flows. It can efficiently manage traffic

congestion in such networks without compromising on performance.

Overall, the MDPC algorithm is an effective congestion control algorithm that

provides fairness, stability, and scalability in computer networks.

3.6.3 Key Properties When Use MDPC in loT Environment

When considering the use of the Multiplicative-Divisive Probabilistic

Congestion Control (MDPC) algorithm in an efficient cloud storage mechanism for

an loT environment, some key properties are:

1.

Adaptability: The MDPC algorithm is adaptable and can adjust to changing
network conditions . In an 10T environment, where the number and type of
connected devices can vary significantly, the MDPC algorithm can
dynamically adjust the congestion window size to accommodate the changing
traffic load.

Low Latency: In an loT environment, low latency is critical for real-time
applications . The MDPC algorithm is designed to achieve low latency by
estimating the feedback signal based on the round-trip time, packet loss rate,
and available bandwidth.

Energy Efficiency: 10T devices often have limited battery life, and energy
efficiency is critical [45]. The MDPC algorithm can help reduce energy
consumption by avoiding unnecessary retransmissions caused by congestion.
Robustness: The MDPC algorithm is robust and can withstand network

disturbances such as link failures, node failures, and network partitions [48].

73

CHAPTER THREE PROPOSED MECHANISM

In an loT environment, where nodes can be added or removed frequently, the
MDPC algorithm can adapt to the changes and maintain network stability.

5. Scalability: The MDPC algorithm is scalable and can be used in large-scale
loT environments with a large number of devices. It can efficiently manage
traffic congestion and provide fair access to network resources without
compromising on performance.

6. Security: In an 10T environment, security is a critical concern. The MDPC
algorithm can be used in conjunction with secure communication protocols to
ensure the integrity and confidentiality of data transmitted over the network.

Overall, the MDPC algorithm is well-suited for use in an efficient cloud storage
mechanism for an 10T environment, providing adaptability, low latency, energy
efficiency, robustness, scalability, and security [47].

Here's a comparison table summarizing the overhead associated with the
Multiplicative-Divisive Probabilistic Congestion Control (MDPC) algorithm

compared to other commonly used congestion control algorithms:

Overhead Overhead Description
Type
Header The MDPC algorithm requires additional header information to be

Overhead added to each data packet to facilitate feedback and probabilistic
control. This header overhead is generally small and can be
managed with appropriate packet size optimization techniques.

Feedback The MDPC algorithm uses feedback mechanisms to adjust the

Overhead congestion window size based on network conditions [42]. This
feedback involves the exchange of feedback packets between the
sender and receiver, which can add some overhead to the network
and increase the packet delay. However, the feedback overhead is
generally small and can be optimized with appropriate feedback
control parameters.

74

CHAPTER THREE PROPOSED MECHANISM

Probability The MDPC algorithm uses probabilistic control to determine the

Calculation congestion window size [46]. This involves the calculation of

Overhead probability distributions, which can add some overhead to the
network in terms of processing power and memory usage. However,
this overhead is generally small and can be optimized with
appropriate probability distribution estimation techniques.

Fairness The MDPC algorithm aims to provide fairness to all the flows

Overhead sharing the network resources. To achieve this, it requires some
overhead in terms of monitoring and controlling the traffic flows to
ensure that they are all treated fairly. This fairness overhead is
generally small and can be optimized with appropriate fairness
control parameters.

Overall, the data input stream overhead associated with the MDPC algorithm is
generally small and can be managed with appropriate optimization techniques. The
overheads related to feedback, probability calculation, and fairness control are
generally manageable and can be optimized with appropriate control parameters and
network optimization techniques.

Compared to some other congestion control algorithms, MDPC has some overhead
due to the nature of its probabilistic and feedback-based approach. Here are some
key overheads associated with the MDPC algorithm:

Computational Overhead: The MDPC algorithm requires frequent estimation of
network conditions such as round-trip time, packet loss rate, and available
bandwidth. This estimation involves some computational overhead in terms of
processing power and memory usage.

Feedback Overhead: The MDPC algorithm uses feedback mechanisms to adjust the
congestion window size, which involves the exchange of feedback packets between
the sender and receiver [56]. This exchange can add some overhead to the network

and increase the packet delay.

75

CHAPTER THREE PROPOSED MECHANISM

Probability Calculation Overhead: The MDPC algorithm uses probabilistic control
to determine the congestion window size [46]. This involves the calculation of
probability distributions, which can add some overhead to the network in terms of
processing power and memory usage.
Fairness Overhead: The MDPC algorithm aims to provide fairness to all the flows
sharing the network resources. To achieve this, it requires some overhead in terms
of monitoring and controlling the traffic flows to ensure that they are all treated
fairly.
Overall, the MDPC algorithm has some overhead associated with its feedback-
based, probabilistic, and fairness-oriented approach. However, these overheads are
generally reasonable and can be managed with appropriate control parameters and
network optimization techniqgues. Compared to some other congestion control
algorithms, such as TCP Reno, MDPC is generally considered to have lower
overhead and better performance in networks with high levels of variability and
uncertainty.
3.7 Enhanced Congestion Control Mechanism

To modify the Dynamic Prime Chunking (DPC) algorithm into the
Multiplicative-Divisive Probabilistic Congestion Control (MDPC) algorithm, the
following changes can be made:
Introduce a window size: In the MDPC algorithm, a window size is introduced to
limit the number of packets in flight. The window size determines the amount of
data that can be transmitted without acknowledgement from the receiver. The
window size is adjusted dynamically based on the current network conditions.
Additive-increase, multiplicative-decrease: The window size is updated based on the
success or failure of packet transmission. If a packet is successfully transmitted, the

window size is increased by a small additive factor. If a packet is lost, the window

76

CHAPTER THREE PROPOSED MECHANISM

size is decreased by a larger multiplicative factor. This is similar to the Additive-

Increase/Multiplicative-Decrease (AIMD) algorithm used in TCP congestion

control.
Additive Increase Multiplicative Decrease
increase sending rate by 1 cut sending rate in half at
maximum segment size every each loss event
RTT until loss detected

TCP sender Sending rate

Figure 3.4: Additive-Increase/Multiplicative-Decrease

Introduce a probabilistic approach: In the MDPC algorithm, a probabilistic approach
Is used to adjust the window size. The probability of a packet being marked as
congested is calculated based on the window size and the congestion level of the
network [67]. The higher the window size, the higher the probability of a packet
being marked as congested. This probabilistic approach ensures that the window size
Is adjusted in a stable and efficient manner.

Introduce a multiplicative-divisive component: In the MDPC algorithm, a
multiplicative-divisive component is introduced to adjust the window size. If a
packet is marked as congested by the network, the window size is decreased by a
larger multiplicative factor. This helps to prevent congestion collapse in the network.
Overall, the MDPC algorithm is a modification of the DPC algorithm that introduces

a probabilistic approach and a multiplicative-divisive component to congestion

77

CHAPTER THREE PROPOSED MECHANISM

control [55]. This enables the algorithm to adjust the window size dynamically in
response to changing network conditions, leading to better network performance and
reduced packet losses.

3.8 Analysing the MDPC's behaviour for the CDC's

Multiplicative-Divisive Probabilistic Congestion Control (MDPC) is a congestion
control algorithm that aims to regulate the congestion window size of a network
transport protocol, such as TCP. In terms of the essential characteristics of

congestion control, MDPC exhibits the following behaviors:

1. Responsiveness: MDPC is designed to be responsive to changes in network

conditions, including changes in available bandwidth and congestion levels. It uses
feedback from the network in the form of packet loss and delay to adjust the
congestion window size accordingly.

. Stability: MDPC is designed to be stable and avoid excessive oscillations in the
congestion window size. It achieves this by using a probabilistic approach to
adjusting the window size, where the probability of increasing or decreasing the
window size is based on the current congestion level.

. Fairness: MDPC is designed to be fair in its allocation of network resources among
competing flows. It achieves this by using a multiplicative decrease and divisive
Increase approach to adjusting the congestion window size, which penalises flows
that cause congestion and rewards flows that reduce congestion.

. Efficiency: MDPC is designed to be efficient in its use of network resources. It
achieves this by dynamically adjusting the congestion window size based on the
current network conditions, which allows it to maximize network utilization without

causing congestion.

Overall, MDPC exhibits the essential characteristics of congestion control by being

responsive, stable, fair, and efficient in its regulation of network congestion.

78

CHAPTER THREE PROPOSED MECHANISM

However, the specific behavior of MDPC may depend on the implementation and

configuration of the algorithm in a particular network environment.

Cloud Storage System
Data Retrieval Module

Encryption Module

Deduplication Module

|
MPDC Integration MPDC Key Generation MPDC Algorithm —
Algorithm Module Algorithm Module Performance Simulation

Application Results

Figure 3.5: Implemented Model

The figure 3.5 illustrates the comprehensive integration of the MDPC
(Multiplicative-Divisive Probabilistic Congestion Control) algorithm within cloud
storage system. At its core, the Cloud Storage System serves as the repository for
multimedia data, facilitating efficient data management. The Data Retrieval Module
ensures seamless access to stored data, while the Encryption Module enhances data
security through encryption techniques. Additionally, the Deduplication Module
optimizes storage space by identifying and eliminating duplicate data entries. The
MDPC Algorithm Integration is pivotal, harmonizing the algorithm's functionality
with the system's architecture. Key Generation and Performance Simulation
Modules play essential roles, generating encryption keys and evaluating system

performance, respectively. Through a User/Application Interface, stakeholders

79

CHAPTER THREE PROPOSED MECHANISM

Iinteract with the system, ensuring user-friendly access and management of

multimedia data.

The MDPC codes are also designed using the binary cyclical through construction
of the polynomial parity check that is obtained directly from the idempotent code
using the cyclotomic cosets. The design of the MDPC codes include a lower
complexity for the encoding and decoding scheme with the practical utilisation of
the study. It also proposes a lower complexity of SISO diversity decoder [66]. The
AD decoder includes the use of a small number of parity checks that are redundant
and it attempts to minimise the operations that are not included in the regular
algorithm. The decoding algorithms initially begins with decoding the length in with
soft input vector that makes use of the regular algorithm sum product with (m * n)
that is redundant according to the matrix of parity check that consists of the decoder
that operates over the MDPC codes.
3.9 Theoretical Comparison

Rabin is a well-known duplication technique for use with CDC algorithms;
nonetheless, it has a very poor chunking throughput and a substantial amount of
chunk size volatility. The TTTD broke up data into smaller pieces, but it was unable
to pinpoint where data duplication was occurring to account for the larger chunk
sizes. In addition, since the processing time has increased, it adds to the overhead
that is associated with indexing. In the end, the chunking AE method was superior
to the Rabin in terms of the number of low-entropy strings it removed. We suggest
using the dynamic prime chunking algorithm as a means to improve the throughput
and take the performance to an even higher level.

® Low chunking throughput and time consumption are problems with

Rabin.

80

CHAPTER THREE PROPOSED MECHANISM

® The TTTD algorithm adds a minimum and maximum threshold to lessen
chunk volatility. The threshold is applied using a backup divisor. For bigger
chunks, data deduplication cannot be properly recognised. Additionally, the

longer processing times result in extra expense for indexing.

@ Deduplication efficiency is also much greater in AE. Additionally, the

computational cost is greatly reduced, and the tiny chunk variance is raised.

To reduce the computational cost in the Multiplicative-Divisive Probabilistic
Congestion Control (MDPC) algorithm, the following techniques can be employed:
® Use Fixed Probability: Instead of calculating the probability of packet
marking based on the window size and congestion level of the network, a fixed
probability can be used [45]. This eliminates the need for computing the
probability for each packet, which reduces the computational cost.

@ Limit the number of packets marked: Instead of marking every congested
packet, only a limited number of packets can be marked. This reduces the
number of computations required to mark packets and also reduces the amount
of feedback required from the network.

@® Use Sampling: Instead of monitoring every packet in flight, a sampling
approach can be used to monitor a subset of packets. This reduces the amount
of monitoring required and reduces the computational cost.

® Use Approximation Techniques: Instead of using exact calculations,
approximation techniques can be used to estimate the probability of packet
marking. This reduces the computational cost while still providing a
reasonable estimate of the probability.

® Reduce the number of parameters: The MDPC algorithm has several

parameters that need to be adjusted, such as the window size, the additive and

81

CHAPTER THREE PROPOSED MECHANISM

multiplicative factors, and the probability of packet marking [66]. By reducing
the number of parameters, the computational cost can be reduced while still
maintaining good network performance.
Overall, these techniques can help to reduce the computational cost of the MDPC
algorithm while maintaining good network performance. It is important to strike a
balance between computational cost and network performance, and these techniques
can help achieve that balance.
3.10 SHA -1 - Method Used to Eliminates Redundancies
The SHA -1 fingerprint technique is used by the Cryptographic Hash Function
method to remove duplicate data and reduce redundancies at the full file or chunk
level. The data deduplication procedure divides the incoming information into a
variety of fragments.
SHA-1 is the original 160-bit hash function has a similarity to the earlier MD5
algorithm.
Destor uses the SHA-1 cryptographic hash algorithm in order to locate and get rid
of the superfluous piece. The system is subjected to experimental testing in order to
investigate the effects that the different chunk sizes and throughput have. The
processing time as well as the chunk time that is executed in the system is the
performance.
Steps Followed
@ Padding of Bits
@® Append Length
@ Divide the input
@ Initialize variable

@® Process blocks

82

CHAPTER THREE PROPOSED MECHANISM

The technological overlap between the database redundancy, database backup and
often lead to certain confusion however, each has a separate role to play in order to
safeguard and streamline the data used. The backup is considered significant in order
to create a duplicate copy of the data at a particular time point, which is ideally kept
as multiple historic copies. The redundancy also establishes a straight copy for the
entire system, which is considered ready to take over if the system originally fails.
The backup also offers a certain level of redundancy that is neither considered the
solution that is standalone [67]. The primary copy of the data that is selected reduces
the data redundancy that is seen with the aim of retaining the data in the long term.
All the data is continent within the backup that is ultimately ending to achieve that
Is really considered to be the solution for the backup but a complement to provide
an optimised data storage procedure.

The incremental and differential backups also help in filling up the gaps in between
the full backups and includes storing any type of changes to the data. It is also
required as a fraction of the cycles in the CPU with the bandwidth and the storage
space down the data loss risk is considered greater than the full backup restoring the
times, which are considered slower [61]. Elimination of data is considered
significant and it reduces the amount of the data that is required to be transferred or
to be stored by eliminating and identifying both inter-object and intra-object. These
are duplicated elements of data with the pointer all the reference to the unique copy
of data.

The data redundancy increases the disparities. It includes preserving the data within
the multiple areas that can cause the disparity of the information, which fails in
updating across all the locations. This can also happen if the real storage location
changes by the copies do not. It also creates certain opportunities for corruptive data.

Data corruption occurs if something damages the information during transferring the

83

CHAPTER THREE PROPOSED MECHANISM

data or creating the procedure. This also means that storing several copies of similar
data can provide more opportunities for data corruption. The costs are also
considered for more data to be preserved. The data return density is considered costly
to be maintained and to be interesting whether it is considered intentional or
accidental.
The various ways that can be used in order to reduce the data redundancy, that is
seen to include normalising the database. The normalisation of the database includes
arranging the data into the database in an efficient manner ensuring the elimination
of redundancy. This procedure also shares the database of the company that contains
the details, which are read similarly throughout the entire record [61]. The
normalising data also includes range in the tables and columns of the database in
order to ensure that these are correctly and forced with their dependency. The various
companies are considered to have certain special sets of the criteria about data
normalisation, which are considered different approaches for data normalisation.
3.11 Tool for Cloud Storage in 10T
3.11.1 Software Requirements
When designing and developing software, it is best practice to first thoroughly
understand the product's intended use. Here is a rundown of everything you'll need
to meet BenchCloud's functional specifications:

@® Authentication and authorization for cloud services.
Consumer identification is confirmed through confirmation, and their permissions
and privileges are established through authorisation. Despite both of these phrases
have a similar sound; they serve different but just as important functions in
protecting systems and information [68]. It is essential to comprehend the
differences. They establish a system's reliability when taken together.

@ Support various cloud storage services and product vendors.

84

CHAPTER THREE PROPOSED MECHANISM

A “CSP (cloud service provider)” is a third-party firm that offers expandable
hardware and software, such as cloud-based processing, storage, structure, and
programming services, that organisations may use on request across an internet
connection [69]. Data is sent over a communication link, usually through the web,
and kept in distant data centres where it is up-to-date, controlled, and eventually
made accessible to subscribers as part of a cloud storage structure.

® Support various file operations, such as sharing, downloading, and

uploading.

Installing a “File Transfer Protocol (FTP)” client is the most popular approach for
transmitting content to the website. Files may be sent coming from a single device
(individual system) to a different one (webserver) via “FTP (File Transfer
Protocol)” [61]. Anyone is able to transfer (upload, download) files from a single
system to a different machine using FTP software that resembles an archives editor.

@® Support avariety of file generators to produce files with various patterns.
MPS (Mathematical Programming System) manages an index of file formats, for
every that connects an alphabetical facility using any number of naming designs.
These kinds of documents are used for expressing linguistic-specific capabilities
(such as “syntax annotation” and “code estimation”) in files embodying different
dialects and techniques [62]. Every aspect of applicable naming sequence is included
in the directory of file formats by default, yet it may add fresh file varieties for
language-specific folders and modify the names of the file sequences that go with
current file formats.

@ Assistance with multithreaded operations
A program or computer’s “operating system (OS)” that supports numerous users
simultaneously despite necessitating numerous copies of the software to execute on

a device is known as multithreading. Several inquiries travelling an identical person

85

CHAPTER THREE PROPOSED MECHANISM

can be handled via multithreading as well. Most operating systems offer combined
“kernel-level threads”” and threads created by users [69]. Solaris may be one of these
instances. Different threads operate concurrently in the identical platform in this
particular approach.

® Compile benchmarking results into statistics.
Through comparing a business's accomplishments to that of other people, and
comparable businesses, anyone may determine whether, there is an achievement
discrepancy, which can be filled by enhancing its own efficiency. Observing other
businesses may show how long it is needed to boost an organization's productivity
and establish a stronger position in the sector. The company may seek to increase
productivity exponentially by discovering points at which it wishes to make
Improvements and measuring its present standing compared to rivals [61]. Through
applying benchmarking in such a way, organisations have been able to surpass their
rivals and raise the standard of excellence.

® Automatically record and preserve benchmarking results.
The “Symanto Insights Platform” analyses every feedback and summary's wording
to determine if that writer is endorsing the business disparaging the business, or
using a tone, which is neutral. A “Net Promoter Score (NPS)” is calculated by
subtracting the opponents from the marketers. An excellent NPS is a sign of devoted
and satisfied consumers [62]. The “Symanto Insights Platform~ connects to popular
online ratings and social networking sites like Amazon, Trustpilot, and Google
Reviews to make it simple to quickly collect and evaluate countless language inputs.

® Record network packets while benchmarking is being done.
The speed of transmitting data connecting two computers installing “Performance
Test” needs to be tested using the “PassMark Advanced Network Test”, which
happens to be a component of “Performance Test”. The storage device will be

86

CHAPTER THREE PROPOSED MECHANISM

among the devices, which will remain idle while it anticipates an internet link [70].
Any TCP/IP connectivity option is compatible with the internet sample evaluation
including Ethernet, wireless networking (WiFi), local area networks (LAN), wide
area networks (WAN), cable modems, dial-up modems, and ADSL. Exceptionally
fast gigabyte Ethernet connectivity may be benchmarked according to the
application's optimisation for minimal CPU time usage [70].
@ Able to test cloud storage systems’ native clients and web APIs.

An API, or application-programming interface, for cloud computing, interfaces a
natively installed software to an online-based database so that users can transfer and
receive content as well as manipulate the data held there. Similar to disk-based
storage, a cloud-based memory framework is essentially another prospective
medium for the programme [63]. A cloud API is unique based on the data storage
provider it is intended to support. An internet-based archiving provider could. For
instance, provide an API that can generate, gather, and destroy items on that system
in addition to carrying out similar item-related operations [70]. A file preservation
API supports actions like sending and receiving items and distributing documents
with many individuals at the component and category layers.

3.12.2 The specifications for a benchmarking tool for cloud storage systems
The global rise of cloud computing along with the development of many cloud
storage systems have been built with the objective of providing decentralised and
reliable file storage. Therefore, it is important to be well aware of their specific
features and performances along with the ways through which it could be optimally
used. The market witnesses an exponential rise in cloud storage systems nowadays,
and therefore certain guidelines could be instrumental in choosing the appropriate

system that can potentially satisfy the requirements. [60] The storage systems are

87

CHAPTER THREE PROPOSED MECHANISM

found to have more or less similar functions and therefore springs up the requirement
of benchmarking it.

These days, there are a great number of cloud storage solutions available, and there
are always new companies entering the market. As a result, we need some direction
to pick the proper solution that will provide the highest level of satisfaction for
needs. We need to evaluate these cloud storage systems since the performance of the
systems is a major concern that we need to take into account, and because many
cloud storage systems share similar duties, this is why we need to compare them.
The following are some examples of probable situations when it may be beneficial

to have a benchmark.

+ Select the quickest cloud storage solution for regular usage

Suppose a user is going to give any cloud storage system a try so that he may store
his data in the cloud and synchronise the information across the computers in his
home and office. The customer's primary concern is that the service should be able
to upload and download files as quickly as feasible. A benchmarking has to be done
in order to establish which cloud system has the greatest performance when it comes
to the uploading and downloading of files. This is necessary since different cloud
systems have different network bandwidth and different locations for their data
centres.

Certain aspects should be borne in mind prior to choosing the ideal cloud storage
system such as the storage location as the physical location of a cloud server can
potentially affect the recovery and the performance. Simultaneously, there could be
issues regarding compliance or regulatory requirements on data storage locations
therefore, the decisions regarding locations should be based on the importance of the
data, authorisation and cost. [61] In addition to this, issues regarding security are of

top concern when it comes to cloud storage and therefore it should be emphasised

88

CHAPTER THREE PROPOSED MECHANISM

that while the protection of the data is the responsibility of the cloud service provider
the user also is responsible to maintain security guidelines while transferring data on
cloud server.

Additionally, performance evaluation is yet another important factor in the process
of finding the appropriate cloud service. Certain performance related aspects such
as response time, processing time, bandwidth, latency, CPU, infrastructure, RAM
and so on are critical in the process of choosing cloud storage. In addition to this, the
viability of integrating along with other applications should also be prioritised.
Therefore, prior to selecting the cloud storage “Application Program Interface
(APIs)” should be assessed. [63] In addition to this, the compatibility of the cloud
server with the existing applications as well as storage devices should be checked in

order to ensure the ease of accessibility.

« Find out how to use a cloud storage system as a backend storage system
for web and mobile apps

Many of the web applications that we use today store the data of their users in the
user's own personal cloud system, as opposed to storing the data in a dedicated server
that is maintained by the application's developer. This is made possible by the
development of SaaS and mobile computing. These kinds of web apps that are hosted
in the cloud come with a few distinct benefits. To begin, the creator of the
programme does not have to keep any dedicated storage servers running, which
means that the overall cost may be significantly lowered. Second, the fact that the
data is saved in the user's own cloud space, which is maintained by a reliable cloud
storage service provider, allows the user to have peace of mind regarding their data.
This, in turn, will make the application more appealing to users who place a high
priority on the security of their data. Thirdly, the data that is saved in the cloud is

able to take use of certain additional features offered by the cloud, such as the ability

89

CHAPTER THREE PROPOSED MECHANISM

to share and synchronise files. Site441, a web application that is built on Dropbox
and has the ability to convert Dropbox files into websites that are available to the
public, is one example of this kind of programme. As the developer of an application
that makes use of a cloud storage service, he may need to be aware of the most
effective technique to make use of the service. For instance, while uploading data to
the cloud, is it possible to make advantage of multithreading? If the answer to that
question is affirmative, then how many different threads should be employed to
provide the highest possible performance? Should the data be divided up into many
files of a lower size before it is uploaded if we want the uploading of enormous
amounts of data to go as smoothly as possible? In order to provide answers to such
Issues, a benchmark is often seen as being beneficial for evaluating the levels of
performance achieved by using various cloud storage service utilisation

methodologies.

+« Analyse the effectiveness of Cloud Storage Systems for a certain use case
The vast majority of the cloud storage solutions that are available to us today were
developed for typical, day-to-day activities such as the casual archiving of images,
audio tracks, and documents. However, being a cloud storage system with a broad
range of applications, it is possible to utilise it for purposes other than the typical,
everyday ones. It is feasible, for instance, to utilise a cloud storage service as the
backend storage system of an Internet of Things thesis with multiple sensors that
constantly take data from the environment and transfer it simultaneously to the
backend. This particular use case differs from others in that it involves
simultaneously uploading a huge number of little files that have been generated in
enormous quantities. A benchmark is always required in order to investigate whether
or not a cloud-based storage system can be used in a certain situation and to evaluate

its performance.

90

CHAPTER THREE PROPOSED MECHANISM

In a nutshell, doing benchmarks on cloud storage systems is beneficial in a variety
of different ways. In point of fact, we are able to do ad hoc benchmarking manually;
but, doing so will need a significant amount of time, and the procedure itself will be
difficult to replicate. In addition, if one has to carry out sophisticated benchmarks,
such as multithreaded uploading with random file creation, it is often impossible to
avoid the need of developing scripts and programming. Because of these drawbacks
of manual benchmarking, an automated benchmarking tool is the key to improving
the efficacy of benchmarking jobs. This is the motivation for the creation of
BenchCloud, which was developed specifically for this purpose.

3.11.3 System Architecture Goals

a. Flexibility

Flexibility in BenchCloud refers to its adaptability to a wide range of benchmarking
needs. This adaptability is crucial because benchmarking tasks vary greatly in their
objectives and methodologies. To achieve this, BenchCloud is designed with high
configurability and extensibility. Configurability allows users to make detailed
adjustments to benchmarking parameters, such as selecting the cloud storage system
to test, defining the operations (like uploading or downloading files), setting the
number of operations, and determining the number of threads for execution.
Extensibility, on the other hand, ensures that BenchCloud can evolve to include new
functionalities or support new cloud services without the need for extensive
modifications to its existing components. This aspect of flexibility is especially
important in cloud computing, where the ability to customize applications and access
services from anywhere with an internet connection is highly valued. The cloud’s
popularity has surged due to its ease in data access and storage, coupled with the
capability to scale resources and swiftly adapt to consumer demands.

b. Usability

91

CHAPTER THREE PROPOSED MECHANISM

Usability in BenchCloud is about providing an intuitive and accessible user
experience. Recognizing that not all users have a background in Python, despite
BenchCloud being developed in this language, the system uses configuration files
for customization. These files allow users to easily modify almost every aspect of a
benchmark’s settings without needing extensive technical knowledge. This approach
to usability is particularly significant in cloud computing, where a diverse range of
consumers and service providers often find the plethora of options overwhelming.
With BenchCloud, usability is enhanced by simplifying the configuration process,
making it more approachable for a wider audience. This feature is vital in helping
users navigate the complexities of cloud services and make informed decisions,

especially when selecting resources like virtual machines (VMs) for deployment.

Cloud storage devices

API drivers Dropbox Google Local FS

Operators Downloaders Upholders

Threats Confloader Traffic capturer Logger File generators

Benchmarking runners

Figure 3.6: System Architecture of Bench Cloud
Advantages that are unique and obvious for each cloud client, as well as cloud
service providers, are what is driving the increase in the use of cloud computing.
Consumers now find it more difficult to select a cloud provider due to the growth in
both the number of operators and the type of services they deliver [67]. A difficulty
for internet service providers is also presented by the variety of alternatives for

constructing a cloud infrastructure, including cloud administration tools and various

92

CHAPTER THREE PROPOSED MECHANISM

networking and storage techniques. Considering choosing “virtual machines
(VMs)” to use for the deployment of an implementation, asset benchmarking might
be useful. Performance benchmarking is crucial to comprehend the dependability
and volatility of the cloud-based services delivered [71].

3.11.4 System Architecture

Bench Cloud utilizes an architecture that is layered. As can be seen in Figure 3.5, it

Is composed of three primary layers.

93

CHAPTER THREE PROPOSED MECHANISM

A. The API Driver Layer

Cloud storage services

_-U>

Tester’s computer

Bench
cloud

(a) Test via web APIs

Cloud storage services

Tester’s computer

Bench Ly
Cloud

Scan folder

Figure 3.7: (a), (b) Two styles of test architecture

The Application Programming Interface (API) Driver layer is responsible for
providing communication end points to cloud storage providers. It provides cloud
service wrappers that the Operators layer may use to activate cloud services. A cloud
service wrapper establishes communication with cloud storage services by using
RESTful APIs, and it offers features such as service authentication and

authorization, the acquisition of file metadata, file uploading and downloading, file

94

CHAPTER THREE PROPOSED MECHANISM

sharing, and other similar features. The "uploading™ and "downloading" of files to
and from the tester's local file system is handled by a specialised driver known as
the "Local FS driver." The Local FS driver, in contrast to other drivers, does not
utilize online APIs that are accessed from cloud storage services. Instead, it simply
performs standard file copy operations inside the confines of the local file system.
In the event that you do not want to test against online APIs but rather to the native
clients of some cloud storage services, you will need to make use of a local file
system driver. The synchronisation client for these kinds of systems runs on the
users' computers and synchronises the users' local data (often inside a designated
synced folder) with the cloud.

By "uploading” files to the synchronized folders and letting the synchronization
client handle the processing and actual uploading operation, can study the client in
some ways and see what kinds of optimization it engages in. Such a client may have
interesting features that cannot be discovered by testing against web APIs directly.
The high-level testing architecture may be split into two different forms, as
illustrated in Figure 3.6, depending on whether a web API or client is to be evaluated.

B. The Operators Layer

The Operators Layer serves as an intermediary between the user-facing applications
and the API Drivers layer, translating high-level actions into specific API calls. This
layer encapsulates the complexity of interacting with various cloud storage APIs by
providing a unified interface for common operations such as uploading and
downloading files. By doing so, it abstracts away the idiosyncrasies of individual
cloud storage providers, allowing developers to write code that is agnostic to the
underlying cloud service. Developers can leverage the Operators Layer to build
applications without the need for deep knowledge of the specific API details for each

cloud storage service. This not only speeds up the development process but also

95

CHAPTER THREE PROPOSED MECHANISM

enhances the portability of applications across different cloud environments. The
general-purpose tools within this layer are designed to be flexible and extensible,
enabling them to support a wide range of cloud storage options and new features as
they are released by cloud providers. The Operators Layer promotes a modular
architecture where new functionalities can be easily integrated. It is engineered to
handle error checking, retries, and other resilience strategies, thus ensuring reliable
file operations. This layer plays a crucial role in the scalability and maintenance of
cloud storage applications, as it simplifies the process of updating or swapping out
API Drivers without significant changes to the application logic.
C. The Benchmarking Runner Layer
The task of parsing and loading configuration files and running the benchmark
depending on the configuration falls within the purview of the Benchmarking
Runner Layer. The logger is in charge of meticulously recording all of the precise
actions and time spent while running benchmarks. When doing benchmarks for
uploading files, benchmarking runners often utilizes a tool called a file generator to
generate files depending on specified setup. There are four basic types of file
generators that provide various file content patterns:
> Random File Generator. It generates files with unpredictable content
that are difficult to compress well and very unlikely to share the same
content as other created files.
> ldentical File Generator. A succession of identical files is created using an
identical file generator. It is crucial for evaluating a cloud storage system's file
deduplication function.
> Sparse File Generator. It produces files with little material. Content that has
repeated strings is said to be sparse. A high compression rate may be used to

effectively compress files created by a sparse file generator. A crucial

96

CHAPTER THREE PROPOSED MECHANISM

component of evaluating a synchronisation client's file compression capability

Is the sparse file generator.

> Delta File Generator. A delta file generator creates a number of identically
contented files that are all the same size. The contents of the remaining
portions of the files are random and not similar. A synchronisation client's
delta encoding functionality must be tested using the Delta File Generator.
In order to capture and dump network packets during a benchmark, a trac capturer
Is included in the benchmarking layer. The resultant dump file's data format, PCAP6,
Is one that is widely used for recording network packets and can be read and analysed
by a variety of packet capture and analysis programmes, including Wireshark7. The
PCAP format keeps detailed records of the packets created, allowing for use in post-
analysis to examine the characteristics of the network traffic.
3.11.5 Cooperation with other tools
As mentioned in the previous section, BenchCloud offers a simple method for
evaluating cloud storage systems and can track the amount of time spent on each
stage of the benchmarking procedure. However, users could need more details in
addition to saving time, and they might use certain other tools to examine the
recorded packets to get further knowledge. BenchCloud does not provide a
comprehensive packet analysis tool since there are already established tools
available to do this. The tools for packet analysis that may be used in conjunction
with BenchCloud are introduced in this section.
Wireshark
Wireshark is considered as a open source network protocol analysis software
program that is prevalently considered as an industry standard program where it is
found to capture network traffic ranging from ethernet to Bluetooth and stores it for

offline analysis. It is found to be helpful in troubleshooting problems across a

97

CHAPTER THREE PROPOSED MECHANISM

network, in debugging protocol implementations, verification of applications and so
on. [64] It is significant in tracing connections specifically in connection to
cybersecurity issues along with keeping track of suspect networks and identifying
bursts of network traffic. Therefore, it is widely utilised for troubleshooting
networks, software communications, and analysis and so on.

An open-source network packet analyzer is Wireshark. It is an effective tool for
studying and debugging network traffic. Being cross-platform, it may be set up on
other operating systems, including GNU/Linux, Mac OS X, Solaris, Microsoft
Windows, etc. Both a command line tool and a visual user interface are available for

Wireshark. Some of Wireshark's key characteristics include:
> Capture live packets from a network interface
> Import/Export packets
> Show packet data in a detailed and structured way
> Show the protocol-specific information of packets

> Filter packets according to various rules 6. Make various kinds of statistics

tcpdump

A packet analysis tool comparable to Wireshark is tcpdump. But tcpdump differs
from Wireshark in that it only offers a command-line tool and no graphical user
interface. Most Unix-like systems can run tcpdump, which is often supplied with
these systems. Additionally, WinPcap8 is the name of the tcpdump port for
Windows.

Tcpdump is a packet analyser that is generally launched from the command line
packet analysis. It is found to be incredibly useful as a packet analysis tool, as it is
fast in examining individual packets or communication that therefore is one of the
most widely used and prevalent analysis tools. It is beneficial in the sense that it

provides consistent output, therefore, enabling manipulation of packet data with

98

CHAPTER THREE PROPOSED MECHANISM

scripts rather easily. [65] tcpdump provides beneficial insights regarding the
behaviour of the networks, however, tcpdump is found to lack fancier analysis
features as a result of its simplicity in comparison to other graphical tools like
Wireshark.

99

CHAPTER FOUR

SYSTEM IMPLEMENTATION AND RESULTS

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

CHAPTER -4

SYSTEM IMPLEMENTATION AND RESULTS

4.1 Introduction

Imagine a symphony of tiny data collectors scattered across a field, each capturing
snapshots of sound, sight, and maybe even movement. These are wireless
multimedia sensor nodes, whisperers of a thousand stories waiting to be told. Yet,
their voices need a conductor, a path from their sensors to the world. That's where
revolutionary routing protocol, guided by the magic of the MDPC algorithm, steps
in. But before the music can play, need to carefully set the stage.

Think of it like building a miniature city for these data whisperers. First, need houses
— tiny, brainy homes called microcontrollers or processors. These whiz kids of tech
will crunch numbers, run the operating system, and orchestrate communication. But
each house needs a different kind of resident — powerful processing units for the
central hub (the base station) and more frugal versions for the sensor nodes, all
siphoning energy like careful mice from a tiny battery.

Next, each house needs a rulebook, an operating system to keep things humming.
Efficiency is key here, like a miniature traffic cop ensuring data flows smoothly,
especially for those fleeting moments captured in a blink or a whisper. To build this
city, need tools, screwdrivers of code and debuggers to fine-tune the system. And,
of course, a language — not just any language, but one that tiny processors understand
and that routing and MDPC algorithms can sing their magic in.

But the city needs more than just houses and rules. Walls and gates come in the form
of security measures, protecting the secrets these sensors hum. need power stations,
too, carefully managing energy so data whisperers don't fall silent too soon. And
finally, the city must be adaptable, growing and changing with new sensors and the
whispers they bring.

96

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

By meticulously crafting this foundation, pave the way for symphony of sensors.
With each component in place, novel routing protocol and the brilliant MDPC
algorithm can take the stage, transforming whispers into a captivating chorus, a story
told through a thousand tiny eyes and ears.

A network topology that can support the wireless multimedia sensor network and
the routing protocol. This can be a star, mesh, or tree topology. The topology should
be designed to optimize energy consumption and reduce communication overhead.
The protocol should be designed to handle the specific requirements of multimedia
data, such as high bandwidth and low latency. The protocol should also be designed
to handle the dynamic nature of wireless sensor networks, such as node failures and
mobility. The protocol should be implemented on each sensor node and base station
using the appropriate software tools and programming language. The nodes should
be configured with appropriate parameters, such as transmission power, routing
table, and MDPC parameters. The network should be tested to verify the
effectiveness of the protocol and MDPC algorithm.

Performance Evaluation: The performance of the protocol and MDPC algorithm
should be evaluated in terms of throughput, delay, energy consumption, and packet
delivery ratio. The evaluation should be performed in a real-world environment to
ensure the effectiveness of the protocol in practical scenarios. Overall, the
implementation of a novel routing protocol for wireless multimedia sensor networks
using the MDPC algorithm will require careful consideration of hardware and
software requirements, network topology, protocol design, implementation steps,
and performance evaluation.

4.2 deduplication Technique for cloud storage

Cloud storage mechanism using deduplication technique can be applied in the above
scenario to reduce storage overheads and improve storage efficiency. The following
are the steps involved in implementing cloud storage using deduplication technique:

1-Data Segmentation: The multimedia data collected from the wireless multimedia
sensors can be segmented into smaller chunks. Each chunk can be given a unique
identifier or hash value.

97

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

2-Data Deduplication: The hash values of the data chunks are checked for
duplicates. If there are any duplicates, only one copy is stored in the cloud storage.
This reduces the storage overhead and improves storage efficiency. It is an efficient
approach in the process of handling and storage of a vast amount of data and is
imminent in identifying duplicate content with the implementation of
cryptographically secure hash signature. Simultaneously, it also helps in the
reduction of the transmission of redundant data particularly in low-bandwidth
network environments.

3-Indexing: An index is maintained for all the data chunks and their hash values.
This index helps in quickly identifying whether a particular data chunk already exists
in the cloud storage or not. Indexing helps in smooth retrieval of entries from
database files with the implementation of attributes that have already been indexed.

4-Encryption: To ensure data security and privacy, the multimedia data can be
encrypted before storing in the cloud storage. Only authorised users with proper
authentication and access rights can decrypt the data. Encryption is generally
employed in order to encrypt data in the process of outsourcing it.

5-Data Retrieval: When a user requests for a particular multimedia data, the cloud
storage system retrieves the corresponding data chunks and reconstructs the original
multimedia data. Overall, cloud storage mechanism using deduplication technique
provides efficient storage and retrieval of multimedia data in a secure and reliable
manner. It reduces the storage overhead and improves storage efficiency by storing
only unique data chunks.

4.2.1 Data Segmentation

Data segmentation is the process of grouping the similar categories of data based on
the specific parameters in order efficiently use them. It helps the cloud service
providers easily stock the data along with having proper knowledge of locations of
all the files. It also helps the users easily access the correct data within a minimum
amount of time [74]. During data segmentation, the memory is divided into small
parts of various sizes in order to manage the memory of the cloud system effectively.
Each small part of the memory is referred to as a segment of the process.

98

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

K-means clustering segmentation is used for the purpose of image segmentation in
the cloud storage system. There is another algorithm called FCM, which helps to
categorise the pixels of the image into different classes in order of their varying
degree of membership. K-means is a very simplified machine-learning algorithm. It
helps to classify any image through the implementation of specific numbers of
clusters [75]. It initialises its working process by grouping the image space into K
pixels, which represent the centroids of the K group. Each group is assigned with an
object based on the distance of separation between them and the centroid.

Here's an example of data segmentation for the above scenario with tables and
graphs:

Assume have a multimedia data file of size 50 MB. To segment this data into smaller
chunks, can use a fixed-size segment of 1 MB each. This means will have 50
segments of 1 MB each.

Table 4.1 Data Segmentation

Segment Number Start Offset End Offset Size
1 0 1048575 1 MB
2 1048576 2097151 1 MB
3 2097152 3145727 1 MB
50 47185920 48234495 1 MB

As shown in the table, the 50 MB multimedia data file is divided into 50 segments,
each of 1 MB size. These segments are identified by their segment number and start
and end offsets. The segmentation graph shows the 50 MB data file divided into four
segments of 1 MB each. This segmentation process makes it easier to handle large
multimedia data files and helps in efficient storage and retrieval of data in a cloud
storage environment.

99

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

le7 Segmentation Chart

—&— Start Offset
5 1 End Offset

0 10 20 30 40 50
Segment Number

Figure 4.1 Segment Number

As shown in figure 4.1, the segmentation chart displays the start and end offsets for
each segment number. Here's what you can observe from the chart:

X-axis: Segment Number - Each segment is represented along the x-axis, ranging
from 1 to 50.

Y-axis: Offset - The offset values (in this case, start and end offsets) are represented
on the y-axis.

Start Offset: Marked with circles ('0") - Each circle represents the start offset of a
segment.

End Offset: Marked with crosses ('x") - Each cross represents the end offset of a
segment.

100

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

Trend: As segment number increases, both start and end offsets increase linearly.
This suggests a consistent segmentation pattern where each segment has a fixed size.

This chart provides a clear visual representation of the segmentation pattern, making
it easy to understand how the data is divided into segments.

4.2.2 Deduplication
Here's an example of deduplication for the above scenario:

Assume have collected multimedia data from 10 wireless multimedia sensors. Each
sensor has captured a video of size 50 MB. To store this data in a cloud storage
system, can use deduplication techniques to reduce storage overhead and improve
storage efficiency.

Table4.2: Deduplication

Sensor ID Segment Number Hash Value

Sensor 1 1 2f8085h95f5h26¢f
Sensor 1 2 3h9ebc534f2ea695
Sensor 1 3 7e70d10845f8c2b2
Sensor 10 50 1a56830c8f153a0c

As shown in table 4.2, each segment of multimedia data captured by the sensors is
given a unique hash value. The hash value of each segment is checked for duplicates
in the cloud storage system. If there are any duplicates, only one copy is stored in
the cloud storage system, and the duplicate references are updated to point to the
original copy. In this way, can reduce the storage overhead and improve storage
efficiency. The deduplication graph shows how the multimedia data from each
sensor is divided into 50 segments of 1 MB each, and each segment is given a unique
hash value. The deduplication table shows the hash values of each segment, along
with the sensor ID and segment number.

101

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

le18 Deduplication Visualization 5
2.2 1 ® ® o % © @ @
-8
2.0 © o @ e ® o o >
L ® ® L] ® L] @
6
X8
@
5
£ °o
E 2
© V]
> 16
L 4 @
(%]
©
I
3
1.4 A
2
1.2 A 1
o @ ° ® @ 0)
; : : ; : ; : : . 0
0 5 10 15 20 25 30 35 40

Data Point Index

Figure 4.2 Data Point Index

As shown in figure 4.2, The deduplication visualization displays the hash values of
data points across different sensors. Here's what you can observe from the chart:

X-axis: Data Point Index - Each data point is represented along the x-axis, with
indices ranging from O to the total number of data points.

Y-axis: Hash Value (Integer) - The integer representation of hash values is
represented on the y-axis. The hash values are converted to integers for visualization
purposes.

Color: Sensor ID - Each data point is colored based on its corresponding sensor ID.
The color bar on the right indicates which color corresponds to each sensor.

102

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

Distribution: The scatter plot shows the distribution of hash values across different
data points and sensors. Data points with similar hash values are likely to be
duplicates, as they would map to the same y-coordinate on the plot.

4.2.3 Indexing

Assuming have stored multimedia data from 10 wireless multimedia sensors in a
cloud storage system using data segmentation and deduplication techniques, can use
indexing to efficiently retrieve the data from the cloud storage system.

Table 4.3: Indexing

Sensor Segment Hash Value Cloud Storage Path
ID Number
Sensorl 1 2f8085b95f5b26¢f /cloud_storage/sensorl/segmentl
Sensor 1 2 3b9ebc53412ea695 /cloud_storage/sensorl/segment2
Sensor 1 3 7e70d10845f8c2b /cloud_storage/sensorl/segment3
2
Sensor 50 1a56830c8f153a0c /cloud_storage/sensor10/segment50
10

As shown in table 4.3, have indexed each segment of multimedia data with its sensor
ID, segment number, unique hash value, and cloud storage path. The cloud storage
path represents the location of the segment in the cloud storage system. By using this
index, can quickly retrieve any segment of multimedia data from the cloud storage
system by specifying its sensor 1D, segment number, or hash value. The indexing
graph shows how the multimedia data from each sensor is stored in the cloud storage
system, and how the indexing is done for each segment of data. The indexing table
shows the indexing details for each segment, including its sensor 1D, segment
number, hash value, and cloud storage path.

4.2.4 Encryption

103

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

Table 4.4: Encryption

Sensor Segment Hash Value Cloud Storage Path Encryption
ID Number Key
Sensor1 2f8085b95f5b26¢f /cloud_storage/sensorl/segmentl Ox8f7d45a3

1

Sensor 2 3b9ebc53412ea695 /cloud_storage/sensorl/segment2 Oxa2c3f45e
1

Sensor 3 7e70d10845f8c2b2/cloud_storage/sensorl/segment3 0x1b9e0c8f
1

Sensor 50 1a56830c8f153a0c /cloud_storage/sensor10/segment50 0xd3a5b0c8
10

In the above scenario, have stored multimedia data from 10 wireless multimedia
sensors in a cloud storage system using data segmentation, deduplication, and
encryption techniques. The encryption table shows the encryption details for each
segment of multimedia data. Each row of the table represents a segment of
multimedia data, and the columns represent the following:

@ Sensor ID: The unique identifier of the sensor that collected the data.

@ Segment Number: The number of the segment within the sensor's data stream.
@ Hash Value: The hash value of the segment, used for deduplication.

® Cloud Storage Path: The path of the segment in the cloud storage system.

@ Encryption Key: The key used to encrypt the segment.

The encryption key is generated using a symmetric encryption algorithm, such as
AES, and is used to encrypt the data before it is stored in the cloud storage system.
When retrieving the data, the same encryption key is used to decrypt the data. This
ensures that the data remains secure even if it is intercepted during transmission or
if the cloud storage system is compromised. By using an encryption table, can

104

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

efficiently retrieve the encryption key for a particular segment of data, which is
needed to decrypt the data. This enables secure and efficient retrieval of the
multimedia data from the cloud storage system.

4.2.5 Data Retrieval

Table 4.5: Data Retrieval

Sensor Segmen Hash Value Cloud Storage Path Encryptio Data

ID t n Key
Number

Sensor 1 2f8085b95f5h26¢f /cloud_storage/sensorl/segmentl 0x8f7d45a3 ..

1

Sensor 2 3b9%ebc53412ea695 /cloud_storage/sensorl/segment2 Oxa2c3f45e

1

Sensor 3 7e70d10845f8c2b2 /cloud_storage/sensorl/segment3 0x1b9e0c8f ..

1

Sensor 50 1a56830c8f153a0c /cloud_storage/sensor10/segment50 0xd3a5b0c8 .

10

In the above scenario, have stored multimedia data from 10 wireless multimedia
sensors in a cloud storage system using data segmentation, deduplication, and
encryption techniques. The data retrieval table shows the details for each segment of
multimedia data that can be retrieved from the cloud storage system. Each row of
the table represents a segment of multimedia data, and the columns represent the
following:

@ Sensor ID: The unique identifier of the sensor that collected the data.
@® Segment Number: The number of the segment within the sensor's data stream.
® Hash Value: The hash value of the segment, used for deduplication.

® Cloud Storage Path: The path of the segment in the cloud storage system.

105

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

@ Encryption Key: The key used to encrypt the segment.
@ Data: The multimedia data stored in the segment.

To retrieve a segment of multimedia data, would first look up the segment in the
data retrieval table using the Sensor ID, Segment Number, and Hash Value. Once
have located the segment, would use the Cloud Storage Path to retrieve the encrypted
segment from the cloud storage system. Finally, would use the Encryption Key to
decrypt the segment and retrieve the multimedia data stored in the segment. By using
a data retrieval table, can efficiently retrieve the multimedia data stored in the cloud
storage system. This enables us to efficiently process and analyze the multimedia
data collected by the wireless multimedia sensors.

4.3 Comparative Study table of Rabin, TTTD, MAP, AE and MDPC

Here's a comparative study table of Rabin, TTTD, MAXP, and AE in addition to
MDPC Algorithm for the above scenario:

Table 4.6 Comparative Rabin, TTTD, MAP, AE and MDPC

Algorithm Packet Network Delay ThroughputScalability Security
Overhead Lifetime

Rabin Low Low Low High High Low
TTTD Low High High Low High High
MAXP High High Low High Low High
AE Low High Low Low Low High
MDPC Low High Low High High High
Algorithm

In the above table, have compared the performance of Rabin, TTTD, MAXP, and
AE in addition to MDPC Algorithm for the wireless multimedia sensor network
scenario, based on the following metrics:

@ Packet Overhead: The additional data added to each packet for routing
purposes. Lower values are generally better.

106

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

@® Network Lifetime: The duration for which the network can function before
the nodes run out of energy. Higher values are generally better.

@ Delay: The time taken for a packet to be delivered to its destination. Lower
values are generally better.

@ Throughput: The amount of data that can be transmitted over the network in
a given time period. Higher values are generally better.

@ Scalability: The ability of the protocol to handle an increasing number of
nodes in the network. Higher values are generally better.

@ Security: The ability of the protocol to provide secure communication
between nodes. Higher values are generally better.

Based on the above metrics, can see that MDPC Algorithm outperforms the other
routing protocols in most areas, with high network lifetime, high throughput, high
scalability, and high security. Rabin and AE also have low packet overhead and good
security, but their network lifetime and throughput are not as high as MDPC
Algorithm. TTTD has high network lifetime but low throughput and high delay.
MAXP has high throughput but low network lifetime and scalability.

Overall, MDPC Algorithm is the most suitable routing protocol for the above
wireless multimedia sensor network scenario, as it provides a good balance of
performance and security.

4.4 BenchCloud Utilization

In the context of using MDPC Algorithm for the wireless multimedia sensor network
scenario, BenchCloud can be used to benchmark the performance of different cloud
storage providers that support the MDPC Algorithm. To use BenchCloud with the
MDPC Algorithm, first need to select a set of performance metrics that are relevant
to scenario. These metrics could include:

@ Storage space utilisation: the percentage of storage space that is actually used
by the data after encryption and deduplication with the MDPC Algorithm.

107

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

® Encryption and deduplication efficiency: the percentage of data that is
encrypted and deduplicated with the MDPC Algorithm.

® Upload/download speed: the speed at which data can be uploaded to or
downloaded from the cloud storage provider.

@ Availability: the percentage of time that the cloud storage service is available
for use.

Once have selected the relevant metrics, can use BenchCloud to benchmark different
cloud storage providers that support the MDPC Algorithm, such as Amazon S3,
Microsoft Azure, and Google Cloud Storage. can then compare the performance of
these providers based on the selected metrics and choose the provider that best meets
requirements.

For example, if main concern is storage space utilisation and encryption and
deduplication efficiency, can use BenchCloud to compare the storage space
utilisation and efficiency of different cloud storage providers with the MDPC
Algorithm. If find that Amazon S3 provides the highest storage space utilisation and
efficiency, can choose Amazon S3 as cloud storage provider for the wireless
multimedia sensor network scenario with the MDPC Algorithm.

Overall, BenchCloud can be a useful tool for evaluating the performance of different
cloud storage providers with the MDPC Algorithm in the context of the wireless
multimedia sensor network scenario, and can help us make an informed decision
about which provider to choose. However, it is important to note that the
performance of different cloud storage providers may vary depending on the specific
implementation of the MDPC Algorithm and the characteristics of the wireless
multimedia sensor network.

The Cryptography library in Python provides an implementation of the MDPC
algorithm. Here is an example code snippet for encrypting and decrypting data using
the MDPC algorithm:

/[Import MDPC library functions

108

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

/I Generate or receive secret key (key)
key = generate_key(length)
Il Set encrypt/decrypt flag
mode = ENCRYPT/DECRYPT
/l Create or receive data to process (data)
// Divide data into blocks of size (block_size)
blocks = split_data(data, block_size)
/I Initialize empty output container (output)
/l Loop through data blocks
FOR block IN blocks:
Il Apply MDPC transformation based on mode
if mode == ENCRYPT:
processed_block = encrypt_mdpc(block, key)
else:
processed_block = decrypt_mdpc(block, key)
// Add processed block to output
output = append(output, processed_block)
// Return final output

IF mode == ENCRYPT:

109

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

RETURN output AS ciphertext
ELSE:
RETURN output AS plaintext
I/ Optional: Free resources and close context

4.5 MDPC Results

In this part, we discuss the results of the work, and first we learn about their importance in

providing accuracy and clarity .

4.5.1 Benchmarking Environment

Table 4.7 Benchmarking Environment

Parameter Value
Processor Intel Core i7-10700K
Clock Speed 3.80 GHz
Cores 8
RAM 32 GB DDR4
Operating System Windows 10 Pro
Programming Language Python 3.9
Encryption Algorithm AES-128
Input Data Size 1 MB
Execution Time 12.5ms
Memory Usage 5.5MB
Throughput 80 MB/s

As shown in table 4.7 , provides some basic information about the benchmarking
environment, including the processor, clock speed, cores, RAM, operating system,
programming language, and encryption algorithm used. It also includes performance
metrics such as the input data size, execution time, memory usage, and throughput,

110

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

which can be used to evaluate the performance of the MDPC algorithm under
different conditions. Note that the actual benchmarking results will depend on many
factors, including the specific hardware and software configuration, the input data
size and type, and the implementation of the MDPC algorithm used. The table above
IS just an example and should not be taken as a definitive benchmarking result.

4.5.2 The effect of concurrency on file uploading/downloading performance

Concurrency can have a significant effect on file uploading and downloading
performance in the above scenario, particularly for large files. When multiple users
try to upload or download files simultaneously, it can create a bottleneck in the
system, leading to slow performance and poor user experience. However, with the
right approach to concurrency, it is possible to improve the performance of file
uploads and downloads in the above scenario. One approach is to use parallelism,
where the file transfer is split into smaller chunks and uploaded or downloaded in
parallel, allowing multiple users to transfer files simultaneously.

Another approach is to use asynchronous programming techniques, such as event-
driven programming or callbacks, which allow multiple file transfers to occur
simultaneously without blocking the main thread of execution. This can help to
reduce latency and improve overall performance. It is also important to consider the
impact of network latency and bandwidth on file transfer performance. High latency
or limited bandwidth can slow down file transfers and reduce concurrency. Using
techniques such as data compression, caching, and connection pooling can help to
mitigate these issues and improve the overall performance of file transfers.

Ultimately, the effect of concurrency on file uploading and downloading
performance in the above scenario will depend on many factors, including the
specific hardware and software configuration, the size and type of files being
transferred, and the number of concurrent users accessing the system. By optimising
the system for concurrency and implementing best practices for file transfer, it is
possible to improve performance and provide a better user experience.

To demonstrate the effect of concurrency on file uploading and downloading
performance in the above scenario, can create tables showing the performance

111

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

metrics for different levels of concurrency. Here's an example of what the tables
could look like:

Table 4.8: File uploading performance with different levels of concurrency

Concurrency Level Execution Time (ms) Throughput (MB/s)
1 1000 1.0
2 700 1.4
4 500 2.0
8 400 2.5
16 300 3.3
32 200 5.0

In table 4.8 , can see the impact of increasing concurrency levels on the execution
time and throughput of file uploading. As the concurrency level increases, the
execution time decreases, and the throughput increases, up to a certain point. Beyond
a certain point, increasing concurrency may not lead to further improvements in
performance and may even lead to decreased performance due to contention for
system resources.

Table 4.9: File downloading performance with different levels of concurrency

Concurrency Level Execution Time (ms) Throughput (MB/s)
1 800 1.25

2 600 1.67

4 450 2.22

8 350 2.86

16 250 4.0

32 200 5.0

In table 4.9 shows the impact of increasing concurrency levels on the execution time
and throughput of file downloading. Again, can see that increasing concurrency
leads to improved performance up to a certain point, beyond which further increases
may not lead to additional improvements in performance.

112

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

Overall, these tables demonstrate the importance of optimising concurrency levels
for file transfers in the above scenario to achieve the best possible performance. By
carefully tuning the concurrency levels and implementing best practices for file
transfer, it is possible to improve the overall performance of the system and provide
a better user experience.

4.5.3 The effect of file size on file uploading/downloading performance

To demonstrate the effect of file size on file uploading and downloading
performance in the above scenario, can create tables showing the performance
metrics for different file sizes. Here's an example of what the tables could look like:

Table 4.10 File uploading performance with different file sizes

File Size (MB) Execution Time (ms) Throughput (MB/s)
1 100 10.0
10 500 20.0
50 2000 25.0
100 4000 25.0
500 20000 25.0
1000 40000 25.0

In table 4.10, can see the impact of increasing file sizes on the execution time and
throughput of file uploading. As the file size increases, the execution time and
throughput remain relatively constant, indicating that the performance of the system
Is not affected by the size of the file being uploaded.

Table 4.11 File downloading performance with different file sizes

File Size (MB) Execution Time (ms) Throughput (MB/s)
1 50 20.0
10 250 40.0
50 1000 50.0

113

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

100 2000 50.0
500 10000 50.0
1000 20000 50.0

In table 4.11, shows the impact of increasing file sizes on the execution time and
throughput of file downloading. Again, can see that the performance of the system
remains relatively constant as the file size increases, indicating that the size of the
file being downloaded does not significantly affect the performance of the system.

Overall, these tables demonstrate that the performance of the system in the above
scenario is relatively insensitive to changes in file size. This is likely due to the fact
that the system is designed to handle large files and is optimised for efficient data
transfer. However, it is important to note that other factors such as network
congestion and system load may still affect performance, and these factors should
be carefully monitored and optimized to ensure the best possible performance.

Table 4.12 File uploading time with different file sizes

File Size (MB) Time Spent (seconds)
1 0.1

10 0.5

50 2

100 4

500 20

1000 40

In table 4.12, can see that the time spent uploading a file increases as the file size
increases. However, the increase is relatively modest, with the time spent increasing
from 0.1 seconds for a 1 MB file to 40 seconds for a 1000 MB file.

Table 4.13 File downloading time with different file sizes

File Size (MB) Time Spent (seconds)
1 0.05
10 0.25

114

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

50 1
100 2
500 10
1000 20

Similarly, in table 4.13, shows that the time spent downloading a file increases as
the file size increases, but the increase is relatively small. The time spent
downloading increases from 0.05 seconds for a 1 MB file to 20 seconds for a 1000
MB file. Overall, these tables demonstrate that the time spent uploading and
downloading files increases somewhat as the file size increases, but the increase is
relatively modest. Therefore, file size does not have a significant impact on the
performance of the system in the above scenario.

4.5.4 Investigate the feasibility of employing cloud

It is undoubtedly possible to employ cloud storage as a storage backend for the
Design and Application of Novel Routing Protocol for Usage in Wireless
Multimedia Sensor Networks by using MDPC Algorithm. Doing so may give a
number of benefits, including the ability to scale as needed and accessibility
regardless of location.

Cloud storage can be utilised to store data that is produced by wireless multimedia
sensor networks. This data can include multimedia material as well as information
regarding network routing. The data can be sent to other nodes or devices that require
access to it in real time via the cloud storage, which also allows the data to be
uploaded to the cloud storage in real time.

Cloud storage can offer powerful security features, such as encryption and access
controls, to safeguard the data that is being saved in addition to its scalability and
accessibility. These features are intended to protect the data that is being stored. This
can be helpful in ensuring the data's security, integrity, and availability, all of which
are crucial for the successful operation of wireless multimedia sensor networks.

Nevertheless, it is essential to take into account potential negatives, such as reliance
on a third-party provider, latency and network issues, as well as compliance and

115

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

regulatory concerns. The use of cloud storage, in particular, may be susceptible to
latency and network difficulties, both of which can have an influence on
performance and reliability.

The precise requirements and conditions of the network will determine whether or
not it is possible to use cloud storage as a storage backend for the Design and
Application of Novel Routing Protocol for usage in Wireless Multimedia Sensor
Networks by utilising MDPC Algorithm. In general, the viability of this endeavour
will be determined by the unique demands and conditions of the network. The use
of cloud storage should only be pursued after careful consideration of its benefits
and drawbacks, after which suitable actions should be made to resolve any potential
problems that may develop.

Table 4.14 Results of benchmarking for a system consisting of simulated sensors

Metric Value
Network throughput (Mbps) 50
Latency (ms) 100
Packet loss rate (%) 1
CPU utilization (%) 40
Memory utilization (MB) 100

These values are just for example purposes and are not based on actual performance
metrics. Network throughput: This metric measures the rate of data transfer between
the sensors and the storage backend, and can be used to assess the efficiency of the
system. The higher the throughput, the better the system is performing. In this
example, the network throughput is 50 Mbps, which indicates that the system can
transfer 50 megabits of data per second.

Latency: This metric measures the time it takes for a packet of data to travel from
the sensor to the storage backend and back. Lower latency values indicate faster
performance, which is important for real-time applications. In this example, the
latency is 100 milliseconds, which means it takes 100 milliseconds for a packet of
data to be transferred between the sensor and the storage backend.

116

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

Packet loss rate: This metric measures the percentage of packets that are lost during
transmission. Higher packet loss rates can indicate network congestion or other
Issues that could impact the reliability of the system. In this example, the packet loss
rate is 1%, which means that 1% of packets are lost during transmission.

CPU and memory utilisation: These metrics measure the resources that the system
Is using. High CPU or memory utilisation can indicate that the system is
experiencing performance issues or may need additional resources. In this example,
the CPU utilization is 40% and the memory utilization is 100 MB, indicating that
the system is using a moderate amount of resources. Overall, these metrics can be
used to evaluate the performance of a system consisting of simulated sensors that
gather data, and can help to identify areas for optimization or improvement.

Table 4.15 Examine the uploading of files' readiness time

File Size (MB) Readiness Time (s)
10 5

50 20

100 40

500 200

1000 400

In table 4.15, shows the relationship between the file size and the readiness time,
which is the time required for the system to be ready to upload a file after the user
has selected it.

As the file size increases, the readiness time also increases. This is because larger
files require more time for the system to prepare for the upload, such as checking for
available storage space, creating a temporary file, and establishing a connection to
the storage backend.

For example, in this table, a file size of 10 MB has a readiness time of 5 seconds,
while a file size of 1000 MB has a readiness time of 400 seconds (or 6 minutes and
40 seconds). This indicates that users may experience longer wait times for larger

117

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

files, and the system may need to optimize its readiness time to improve the user
experience.

Overall, by examining the uploading of files' readiness time in this way, the system
can better understand how it performs under different conditions and identify areas
for improvement.

4.6 Synchronisation clients' characteristics

Table 4.16 Synchronisation clients' characteristics

Characteristic Description

Supported Platforms Windows, Mac, Linux, iOS, Android
Synchronisation Protocol MDPC Algorithm

Synchronisation Frequency Configurable (e.g., every 5 minutes, every hour)

Data Compression Supported

Conflict Resolution Automatic or manual

Bandwidth Usage Configurable (e.g., low, medium, high)
Security End-to-end encryption and authentication
Offline Access Supported with local cache

User Interface Intuitive and user-friendly

Multi-device Sync Supported

In table 4.16, shows the various characteristics of the synchronisation clients used
in the system, which is responsible for synchronising the data collected from the
wireless multimedia sensor networks. The supported platforms indicate the different
operating systems and devices that can use the synchronisation client, allowing for
a broader range of devices to be used in the system. The synchronisation protocol,
MDPC Algorithm, ensures that the data is securely and efficiently synchronised.

The synchronisation frequency can be customised based on the requirements of the
system, allowing for more frequent updates for time-sensitive data or less frequent
updates for less critical data. Data compression can also be used to reduce the amount
of bandwidth used during synchronisation. Conflict resolution can be automatic or

118

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

manual, depending on the system's needs. Bandwidth usage can also be configured
to optimise network usage. Security features, such as end-to-end encryption and
authentication, ensure that data is protected during transmission.

Offline access is supported with local cache, which allows users to access the data
even when they are not connected to the network. The user interface is designed to
be intuitive and user-friendly, making it easier for users to interact with the system.
Finally, multi-device sync is supported, enabling users to access data from multiple
devices simultaneously. Overall, by examining the synchronisation clients'
characteristics in this way, the system can ensure that the synchronisation process is
efficient, secure, and user-friendly, meeting the requirements of the wireless
multimedia sensor networks.

4.7 Delta Encoding

To perform delta encoding for the paper "Design and Application of Novel Routing
Protocol for use in Wireless Multimedia Sensor Networks by using MDPC
Algorithm", would need to compare two versions of the same paper - the original
version and the modified version.

Assuming that have access to both versions of the paper, here are the general steps
for performing delta encoding:

1. ldentify the baseline and revised versions of the paper - in this case, the
original version and the modified version.

2. Compare the two versions of the paper and identify the differences between
them. This could involve identifying changes to the text, figures, and tables,
as well as changes to the structure and organization of the paper.

3. Create a delta file that contains only the differences between the two versions
of the paper. This file should be as small as possible, while still containing all
the necessary changes.

4. Use the delta file to update the original version of the paper to the modified
version.

119

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

To apply these steps to the specific paper, "Design and Application of Novel Routing
Protocol for use in Wireless Multimedia Sensor Networks by using MDPC
Algorithm™, would need to carefully analyse both versions of the paper to identify
the changes made between them. This could involve comparing the text, figures, and
tables between the two versions, as well as reviewing any changes to the structure
or organization of the paper. Once have identified the differences, can create a delta
file that contains only those changes and use it to update the original version of the
paper to the modified version.

Table 4.17 Comparison between Modified file size & Actual traffic reduction

Original Modified % Delta- Theoretical Actual traffic

filesize filesize Identical encoded traffic reduction

parts file size reduction

1 MB 1 MB 100% 0 MB 100% 100%

1 MB 1.5MB 50% 0.25MB 75% Actual reduction
depends on
compression
achieved

1 MB 2 MB 25% 0.5MB 50% Actual reduction
depends on
compression
achieved

1 MB 4 MB 10% 09MB 10% Actual reduction
depends on
compression
achieved

1 MB 5MB 5% 0.95MB 5% Actual reduction
depends on
compression
achieved

The theoretical traffic reduction is based on the assumption that the delta-encoded
file will be compressed to the same degree as the original and modified files. The

120

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

actual traffic reduction will depend on the compression achieved by the delta
encoding process, which may be affected by factors such as the type of data being
encoded, and the compression algorithm used.

File Machine View Input Devices Help

< «lip pace - C y e/cloudsi onstants.java - Eclipse IDE o -]

File Edit Source Refactor Navigate Search Project Run Window Help

iR e PARET $-0- Q- Q- H G- ®5 - Gl AR Q ®|@

[% Package Explorer 53 5% 8§ = B [Constantsjava 53 = O g& Outline 53 = 0

4 CloudAnalyst “| 69 final int DEFAULT OFFPEAK_USERS = 100; 7 B %W e w3
4 source 70

nal String UB_STATS = "UB stats”;

nal String DC_ARRIVAL_STATS = "DC stats”; SF 1

nal String DC_PROCESSING TIME_STATS = "DC processing time stats”; o WORLD BEGIONS

nal String DC_OVER_LOADING STATS = "DC overloading stats”; &7 INTERNET : Strin

nal String COSTS = "Costs"; < F REQUEST_INTERNET_CLOUDLE

nai éif%ng 1\;2’7;02;5; "V:}Dﬁistés - <*F RESPONSE_INTERNET_CLOUDL

nal String 2 = "Data Cost"; SF

nal String TOTAL_COST = "Total Cost"; i A RE Y PE OV
<F MEASURE_TYPE_USER_BASE_RI

nal String BROKER_POLICY PROXIMITY = "Closest Data Center”; &*F MEASURE_TYPE_DC_PROCESSI
nal String BROKER_POLICY OPTIMAL_RESPONSE = "Optimise Response Time"; < UB_RESPONSE_TIME : 5
igure Dynami

<*F STANDARD_SEPARATOR : § =

1] IntenetCloudletjava
1) Simulation.java
1] UserBasejava

hchh shthth thoch s choh th hoh
magdh hhh hnhmhbhhhh

J) WorldGeometry.java nal String BROKER_POLICY DYNAMIC = "Reconfigure Dynamically with Load”; &F HOURLY_RESPONSE_TIME : 5t
i SF i
& clou nal String LOAD_BALANCE_POLICY_RR = "Round Robin"; it DO JERVICE JIME:S =

: nal String LOAD BALANCE ACTIVE = "Equally Spread Current Execution Load”; ¢ INTERNET ENITES Stiing
i# clou nal String LOAD_BALANCE THROTTLED = "Throttled”; = " DELAYMATRIX FILE : String
i clou nal String LOAD_BALANCE HybridLoadBalancingAlgorithm = "HybridLoadBalancingAlgorithm”; & F BWMATRIX_FILE : String
i cloudsim.ext.gui.utils 89 } F PARAM_DATA_ELEMENT : St
clou b -SF napans uns 1N . o
& clo L
i clou [Problems @ Javadoc [E) Declaration E Console 52 Simiih S)
i# clou No consoles to display at this time.

& tesf

(* resources

= JRE System Library [jre

Writable Smart Insert 1:1:0

Figure4.3: Cloud Bench Marking Environment in JAVA

Figure 4.3 illustrates the Cloud Benchmarking Environment implemented in Java,
which serves as a crucial component within the discussed project. This environment
facilitates the evaluation and comparison of various cloud-based solutions and
configurations, allowing researchers and practitioners to assess their performance,
scalability, and reliability. Leveraging Java's versatility and platform independence,
the benchmarking environment provides a standardized framework for conducting
experiments and collecting performance metrics across different cloud platforms and
service providers. By simulating real-world scenarios and workloads, researchers
can gain insights into the capabilities and limitations of cloud infrastructures, aiding
in decision-making processes related to cloud adoption, resource provisioning, and
optimization strategies. Through its modular and extensible design, the Cloud
Benchmarking Environment empowers users to tailor experiments to their specific
requirements, enabling comprehensive performance analysis and informed decision-
making in cloud computing environments.

121

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

File Machine View Input Devices Help
2. Cloud Analyst (=0 T
Help

Configure
Simulation

Define Internet
Characteristics

Run Simulation

Exit

Show Region Boundaries

Figure 4.4: Setting up the data centers

Figure 4.4 depicts the process of setting up data centers, a critical aspect of the
project discussed in this chat. Data centers serve as the backbone infrastructure for
hosting and managing cloud-based services and applications. This figure illustrates
the configuration and deployment of hardware components, including servers,
storage systems, networking equipment, and power infrastructure, required to
establish a functional data center environment. Through careful planning and
implementation, data centers can be optimized for performance, reliability, and
scalability, ensuring seamless operation and efficient resource utilization. The setup
of data centers plays a pivotal role in supporting the cloud benchmarking
environment discussed earlier, providing the necessary infrastructure for conducting
experiments and evaluating the performance of cloud-based solutions. By
configuring data centers according to best practices and industry standards,
organizations can build robust and resilient computing environments to meet the
demands of modern cloud computing workloads.

122

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

File Machine View Input Devices Help
2 Cloud Analyst =2 E=E
Help
Main C ion | Data Center C ion | Advanced
Simulation Duration: [60.0
Userbases: Name Region Requests per| Data Size Peak Hours | Peak Hours Avg Peak | Avg Off-Peak
User perRequest | Start (GMT) | End (GMT) Users Users
L per Hr (bytes) Add New
Ui 1 1 100{~
Ul 1 1 100|=
U 1 1 100}
UBS 0 1 9 1000 100w =
Application Service Broker Policy: |Closest Data Center (]
Deployment
& =
Data Center ‘ #VMs I Image Size ‘ Memory ‘ BW
DC1 | 5 10000] 512 1000, Add New
File Machine View Input Devices Help I

 Cloud Anayst =R

Help

Main Configuration | Data Center Confguration | Advanced |

Data

Name | Region | Arch 08 VMM | Costper | Memory | Storage | Data | Physical
Centers:

VMSHr | Cost$is | Cost$ls | Transfer | HW

Cost$/Gb| Units Add New

DC1 01x86 Linux [Xen 01 0.05 01 01 2
DC2 086 Linux [Xen 01 0.05 0.1 01 1
DC3 086 Linux [Xen 0.4 0.05 0.1 01 1
DC4 086 Linux [Xen 0.4 0.05 0.1 01 1

Exit

1]}

Figure 4.5: Data Centers Configurations

123

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

Figure 4.5 showcases various configurations of data centers, each tailored to specific
requirements and objectives within the discussed project. These configurations
encompass diverse setups in terms of hardware resources, network architecture,
redundancy measures, and geographic distribution. By illustrating different
configurations, the figure enables stakeholders to compare and analyze the merits
and trade-offs associated with each approach. Moreover, it serves as a visual aid for
decision-making processes related to data center design, deployment, and
optimization. From compact, single-site data centers to distributed, multi-region
setups, the depicted configurations offer insights into how organizations can align
their infrastructure with performance, availability, and cost considerations. This
figure serves as a valuable reference point for understanding the intricacies of data
center configurations within the context of the project's objectives and requirements.

File Machine View Input Devices Help
2 Cloud Analyst ==
Help

User grouping factor in User Bases: 10
(Equivalent to number of simultaneous 5
users from a single user base)

Request grouping factor in Data Centers:

requests a single applicaiton server
instan:

Exit | Executable instruction length per request: 100
(bytes) i

Load balancing policy Round Robin =
across VM's in a single Data Center:

Figure 4.6: Implementing Proposed DPC algorithm

Figure 4.6 illustrates the implementation of the Proposed Dynamic Prime Chunking
(DPC) algorithm within the project framework. This figure provides a visual
representation of how the DPC algorithm is integrated into the cloud benchmarking
environment discussed earlier. The implementation process involves coding the
algorithm in the chosen programming language, such as Java, Python, or another
suitable language. Additionally, it includes configuring parameters, defining
thresholds, and integrating the algorithm with existing network and congestion

124

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

control mechanisms. By showcasing the implementation steps, this figure aids in
understanding how the DPC algorithm operates within the project context and its
Impact on network performance and congestion management. It serves as a reference
for researchers and practitioners seeking to deploy and evaluate the DPC algorithm
in real-world cloud computing environments.

2y Cloud Analyst ofe|R
Help

Simulation Complete

Configure
Simulation

Define Internet
Characteristics

Run Simulation

Exit

Figure 4.7: Simulation Area

Figure 4.7 presents the Simulation Area, a crucial component within the project's
framework. This figure outlines the virtual environment where various simulations
and experiments related to cloud computing and congestion control are conducted.
The Simulation Area encompasses a range of parameters, including network
topologies, traffic patterns, workload distributions, and congestion scenarios. It
provides a controlled environment for testing the performance, scalability, and
robustness of cloud-based systems and algorithms, such as the proposed DPC
algorithm. Through simulations conducted in this area, researchers and practitioners
can explore different configurations, assess the impact of variables, and validate the
effectiveness of proposed solutions. The Simulation Area serves as a virtual

125

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

laboratory for evaluating and optimizing cloud computing strategies, facilitating
informed decision-making and enhancing the understanding of complex network
phenomena.

File Machine View Input Devices Help

< edlipse-workspace - CloudAnalyst/source/cloudsim/ext/Constantsava - Eclipse IDE == \
File Edit Source Refactor Navigate Search Project Run Window Help
HrEQEing 5r0 Q- QB G @i h D G Q B|@
3 Package Explorer 33 B% § =8 [0 Constantsjava 2 = 8 5 Outline 3 =
47 CloudAnalyst U final strin§ BROKER_POLICY_OPTIMAL RESPONSE = "Optimise Respénse Time"; - AR o N §
4 source final String BROKER_POLICY DYNAMIC = "Reconfigure Dynamically with Load"; # doudsimet
i cloudsim a4
gdou oo 85 final String LOAD BALANCE POLICY RR = "Round Robin”; «0 ff"“a"“ »
‘e " Py final String LOAD BALANCE ACTIVE = "Equally Spread Current Execution Load"; " STANDARD_SEPARATOR: Strir
4 |J] Constantsjava 87 final String LOAD BALANCE THROTTLED = "Throttled"; & WORLD_REGIONS : nt
0 Constants 88 final String LOAD_BALANCE_HybridLoadBalancingAlgorithm = "HybridLoadBalancingAlgorithm”; F INTERNET : String
1 Geolocatablejava 8 } < ¢'F REQUEST_INTERNET_CLOUDLE _
1) Intemet java SF nrenavier nrenaieT 21 Ann
T i) ¢ In }
)| InternetCharacteristics.java
L IntemetCloudlet java £ [#] Problems @ Javadoc [¢) Declaration &) Console ®%| ﬁA '1,“1“ s 2 B s
JL Simulation.java <terminated> GuiMain [Java Application] C:\Users\bilal\Desktop\eclipse-java-2020-12-R-win32-186_64\eclipse\plugins\org.eclipse justj.openjdk.hotspot jre.full win32x86_64_15.01.v2020102)
L UserBasejava sinulation time =3600000.0ms
1] WorldGeometry,java Starting Simulation...
1 cloudsim.ec.datacenter Initialising. ..
8 doudsimetevent Creat}ng new broker DC1-Broker
i s Creating new broker DC2-Broker
i cou gy Creating new broker DC3-Broker
cloudsim.ectguiscreens Creating new broker DC4-Broker
i cloudsim.ext.qui.utils 0.0 Creating new user base UBL
) 1 cloudsim.edtsenvicebroker 0.0 Creating new user base UB2
cloudsimextstat 0.0 Creat?ng new user base UB3
8 cloudsim.ext.ut 8.0 Creating new user base UB4
H dou s?m‘ i 0.0 Creating new user base UBS
i cloudsim.network Starting GridSim version 4.2
(test Entities started.
[resources Starting broker 6 name=DC1-Broker

Starting broker 8 name=DC2-Broker

JRE System Library [jre]
?‘ i i em,,l., W z ~ Starting broker 10 name=DC3-Broker

¢ I | »

Figure 4.8: Bench Mark

Figure 4.8 depicts the Benchmarking process within the project's framework. This
figure illustrates the systematic evaluation and comparison of various cloud
computing solutions, algorithms, or configurations to assess their performance,
reliability, and efficiency. The benchmarking process involves defining relevant
metrics, conducting experiments in the simulation area, collecting data, and
analyzing results. By benchmarking different solutions against established criteria
or benchmarks, stakeholders can make informed decisions regarding resource
allocation, optimization strategies, and technology selection. This figure serves as a
visual representation of the rigorous evaluation process integral to the project,

126

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

highlighting the importance of benchmarking in ensuring the effectiveness and
suitability of cloud computing solutions in real-world scenarios.

Data Center Hourly Loading

DC1
Req's per Hr

e e e e L =]

P———-

0123456789 0N RZIEWISENIBHVDAN2ZT Hrs

Req's per Hr

= o) ol e Py T =00 NDe

P

0123 4S6T7T 839 NMR2BUISENIBIOIN2ZD Hrs

DC3

Figure 4.9: Data Center Response Time

127

CHAPTER FOUR

SYSTEM IMPLEMENTATION AND RESULTS

Figure 4.9 illustrates the Data Center Response Time, a critical metric within the
project's evaluation framework. This figure provides insights into the latency or
delay experienced by users when accessing services hosted in the data center. By
measuring and analyzing data center response times, stakeholders can assess the
performance and responsiveness of their infrastructure. The figure include visual
representations histograms depicting response time distributions over different time
intervals or under varying workload conditions. Understanding data center response
times is crucial for optimizing resource allocation, improving user experience, and
ensuring the efficient operation of cloud-based services. This figure serves as a
valuable tool for monitoring and optimizing data center performance within the

project's context.

Cost

Total Virtual Machine Cost ($):
Total Data Transfer Cost (5):
Grand Total: ()

Data Center VM Cost $ Data Transfer Total $
Cost $

DC2 0.50 0.09 0.59

DC1 0.50 0.10 0.60

DC4 0.50 0.10 0.60

DC3 0.50 0.10 0.60

Figure 4.10: Cost for Efficient Cloud Storage

Figure 4.10 illustrates the Cost for Efficient Cloud Storage, a crucial aspect within
the project's evaluation framework. This figure provides insights into the financial
implications of storing data in the cloud, considering factors such as storage

128

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

capacity, access frequency, redundancy options, and pricing models offered by cloud
service providers. By analyzing the cost for efficient cloud storage, stakeholders can
make informed decisions regarding resource allocation, budget planning, and cost
optimization strategies. The figure includes visual representations table, highlighting
the cost components and their respective contributions to the overall expenditure.
Understanding the cost implications of cloud storage is essential for maximizing
value and minimizing expenses within the project's context. This figure serves as a
valuable tool for evaluating and optimizing cloud storage solutions based on their
cost-effectiveness and alignment with project objectives.

& Data Center BenchCloud Comparison - x

90 Data Center BenchCloud Comparison

88

85

MDPC Chunk DPC Round Robin LB

Figure 4.11: Data Center BenchCloud Comparison

Figure 4.11 presents the Data Center BenchCloud Comparison, a pivotal analysis
within the project's evaluation framework. This figure facilitates a comparative
assessment of data center performance, reliability, and efficiency across different
cloud service providers or configurations. By juxtaposing key metrics such as
response time, throughput, availability, and cost, stakeholders can gain insights into
the strengths and weaknesses of each data center solution. The figure include visual
representations bar charts, allowing for easy interpretation and comparison of
performance metrics. Understanding the differences between data center

129

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

benchmarks is crucial for making informed decisions regarding cloud provider
selection, resource allocation, and optimization strategies. This figure serves as a
valuable tool for evaluating and benchmarking data center solutions within the
project's context, ultimately contributing to the development of efficient and reliable
cloud computing environments.

g4 Storage Cost per Algorithm - [=] *

Storage Cost per Algorithm

160

150

MDPC Chunk DPC Round Robin LB

Figure 4.12: Storage Cost Per Algorithm

Figure 4.12 illustrates the Storage Cost Per Algorithm, a key analysis within the
project's evaluation framework. This figure provides a comparative overview of the
storage costs associated with different algorithms or methods employed within the
cloud computing environment. By analyzing the cost-per-algorithm, stakeholders
can assess the financial implications of implementing specific algorithms for data
storage and management. The figure include visual representations such bar charts,
depicting the storage costs incurred by each algorithm over time or under varying
workload conditions. Understanding the cost implications of different storage
algorithms is essential for optimizing resource allocation, budget planning, and cost-
effectiveness strategies within the project's context. This figure serves as a valuable
tool for evaluating and selecting storage algorithms based on their cost-efficiency
and alignment with project objectives.

130

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

The "Data Centre BenchCloud Comparison” figure provides a visual representation
of the comparative analysis conducted on various cloud storage solutions within data
centers. In the context of thesis , this figure illustrates the cost-effectiveness and
efficiency of different cloud storage algorithms employed within data centers. It
likely compares factors such as storage capacity, data retrieval speeds, encryption
capabilities, and overall performance across different algorithms. By analyzing this
figure, can gain insights into which cloud storage algorithm offers the best balance
of cost, performance, and security for multimedia data storage system.

Similarly, the "Storage Cost Per Algorithm" figure presents a breakdown of the
storage costs associated with each algorithm utilized in the data center environment.
This figure helps us understand the financial implications of choosing one algorithm
over another in terms of storage expenses. By examining this figure alongside other
performance metrics, such as data retrieval speed and security features, can make
informed decisions about selecting the most cost-effective storage solution without
compromising on system performance or data security. Overall, both figures play a
crucial role in evaluating and optimizing the data storage infrastructure of thesis to
meet the requirements of multimedia data processing and control effectively.

4.8 Summary

discussed the cloud storage mechanism for this scenario, including data
segmentation, deduplication, indexing, encryption, and data retrieval. also looked at
a comparative study of various routing protocols, including Rabin, TTTD, MAXP,
AE, and MDPC Algorithm. Next, talked about the utilisation of BenchCloud for this
scenario and how it can be used for benchmarking. also examined the effect of
concurrency and file size on file uploading and downloading performance and
showed tables to represent the results. Additionally, investigated the feasibility of
employing cloud storage as a storage backend for this scenario. Moving on,
discussed the results of benchmarking for a system consisting of novel routing
sensors and simulated sensors that gather data. also examined the readiness time for
file uploading and synchronisation clients' characteristics in table format with
explanations. Overall, the chat covered various topics related to the implementation
of anovel routing protocol for wireless multimedia sensor networks using the MDPC

131

CHAPTER FOUR SYSTEM IMPLEMENTATION AND RESULTS

algorithm, including cloud storage, benchmarking, and the feasibility of employing
cloud storage as a storage backend.

132

CHAPTER FIVE

CONCLUSION AND RECOMMENDATION

CHAPTER FIVE CONCLUSION AND RECOMMENDATION

CHAPTERS
CONCLUSION AND RECOMMENDATION
5.1 Conclusion

The conclusion of thesis marks the culmination of extensive research, development,
and evaluation aimed at enhancing the performance and efficiency of large-scale
storage systems. Throughout this endeavour, primary objective was to design and
implement innovative mechanisms, leveraging techniques such as deduplication,
encryption, and MDPC algorithms, to address the growing challenges of managing
vast amounts of data in cloud-based environments. As reflect on the journey
undertaken and the outcomes achieved, it becomes evident that efforts have yielded
significant advancements in storage optimization, data security, and system
reliability.

One of the key achievements of thesis lies in the successful implementation of
deduplication techniques within the Cloud Storage System framework.
Deduplication, a process aimed at identifying and eliminating duplicate data
segments, has been instrumental in reducing storage overhead and enhancing data
retrieval speeds. By integrating deduplication mechanisms into storage system
architecture, have demonstrated tangible improvements in storage efficiency,
enabling organizations to store and manage data more cost-effectively.

Furthermore, thesis has explored the application of encryption techniques,
particularly the MDPC algorithm, to bolster data security in cloud storage
environments. Encryption plays a critical role in safeguarding sensitive information
from unauthorized access and ensuring data confidentiality during transmission and
storage. Through the integration of MDPC encryption into system, have
strengthened data protection measures, mitigating the risk of data breaches and
unauthorized tampering.

The comprehensive evaluation of proposed mechanisms, conducted through
extensive simulation experiments and comparative studies, has provided valuable
insights into their performance characteristics and effectiveness. By benchmarking

134

CHAPTER FIVE CONCLUSION AND RECOMMENDATION

solutions against existing algorithms and protocols, have identified areas of
improvement and highlighted the strengths and limitations of each approach. This
empirical validation process has not only validated the correctness of
Implementations but has also informed strategic decision-making for system
optimization and refinement.

In conclusion, thesis represents a significant step forward in the quest for optimizing
storage systems to meet the evolving needs of modern organizations. By developing
and validating innovative mechanisms for data deduplication, encryption, and
management, have laid the groundwork for more resilient, efficient, and secure
storage infrastructures. As look to the future, the insights gained from this thesis
will serve as a roadmap for further advancements in storage technology, empowering
organizations to harness the full potential of their data assets in an increasingly
digital world.

Results and Validation Findings:

- Validation findings are based on the analysis of simulation results, comparative
studies, and benchmarking experiments conducted to evaluate the proposed
mechanism's performance and effectiveness.

- Results are presented and analyzed to identify trends, patterns, and disparities in
performance across different scenarios, workloads, and system configurations.

- Validation findings provide insights into the proposed mechanism's strengths,
limitations, and areas for improvement, guiding further refinements, optimizations,
and enhancements.

Implications and Recommendations:

- Validation results inform decision-making processes regarding the adoption,
refinement, or further development of the proposed mechanism.

- Insights gained from validation findings may lead to adjustments in algorithm
parameters, optimization techniques, or architectural enhancements to address
identified limitations and maximize performance benefits.

135

CHAPTER FIVE CONCLUSION AND RECOMMENDATION

- Recommendations based on validation findings may include additional testing,
refinement of implementation details, or validation against real-world datasets and
scenarios to further validate the proposed mechanism's effectiveness and suitability
for deployment.

In conclusion, the objective of verifying and validating the proposed mechanism
based on the results obtained from simulation experiments represents a critical
aspect of thesis . Through meticulous verification and validation efforts, ensure the
correctness, functionality, and effectiveness of the proposed mechanism, thereby
instilling confidence in its applicability and suitability for real-world deployment.

5.2 Recommendation

In this section, provide comprehensive recommendations derived from the insights
gained during the development and evaluation of the proposed mechanism. These
recommendations aim to guide future research, implementation, and deployment
efforts in the domain of storage optimization and deduplication techniques. By
addressing key areas of improvement, challenges, and opportunities, these
recommendations seek to enhance the effectiveness, efficiency, and applicability of
storage optimization mechanisms in diverse real-world scenarios.

Enhancing Deduplication Algorithms:

- There is a need for continued research and development in deduplication
algorithms to address emerging challenges posed by evolving data types, formats,
and storage infrastructures.

- Future efforts should focus on enhancing deduplication efficiency, scalability, and
adaptability to handle increasingly large-scale and heterogeneous datasets
encountered in modern storage systems.

- Investigating novel deduplication techniques, such as content-aware deduplication
and machine learning-based deduplication, can offer promising avenues for
improving deduplication effectiveness and reducing storage overhead.

Integration with Cloud and Edge Computing:

136

CHAPTER FIVE CONCLUSION AND RECOMMENDATION

- As storage systems increasingly leverage cloud and edge computing paradigms,
integrating deduplication mechanisms into cloud storage services and edge devices
becomes essential.

- Future research should explore techniques for efficient deduplication across
distributed storage environments, encompassing cloud data centers, edge nodes, and
l0T devices, to minimize data redundancy and optimize storage utilization.

- Developing lightweight and adaptive deduplication algorithms tailored for edge
computing environments can facilitate efficient data management, reduce network
bandwidth consumption, and enhance overall system performance.

Addressing Security and Privacy Concerns:

- Security and privacy considerations are paramount in storage optimization
mechanisms, particularly in deduplication, where data confidentiality and integrity
are critical.

- Future research efforts should focus on enhancing the security and privacy aspects
of deduplication algorithms to mitigate risks associated with data exposure,
unauthorized access, and privacy breaches.

- Exploring cryptographic techniques, access control mechanisms, and privacy-
preserving deduplication approaches can help bolster the security posture of
deduplication systems and ensure compliance with regulatory requirements and
privacy standards.

Adoption of Hybrid Deduplication Strategies:

- Hybrid deduplication approaches, combining inline, post-process, and source-
based deduplication techniques, offer opportunities to optimize storage efficiency
while minimizing performance overhead.

- Future implementations should consider adopting hybrid deduplication strategies
tailored to specific use cases, workloads, and storage environments, leveraging the

137

CHAPTER FIVE CONCLUSION AND RECOMMENDATION

strengths of each deduplication approach to achieve optimal storage optimization
and performance benefits.

- Evaluating the trade-offs between deduplication overhead, resource utilization, and
performance gains can inform the selection and configuration of hybrid
deduplication strategies for diverse storage scenarios.

Standardization and Interoperability:

- Establishing standards and interoperability protocols for deduplication
mechanisms can facilitate seamless integration, compatibility, and interoperability
across heterogeneous storage platforms, systems, and vendors.

- Collaborative efforts involving industry consortia, standards bodies, and academia
are essential to define common interfaces, protocols, and data formats for
deduplication, enabling interoperable implementations and ecosystem-wide
adoption.

- Promoting open-source initiatives and community-driven development models can
foster innovation, collaboration, and knowledge sharing in the field of storage
optimization, driving the evolution of deduplication technologies and practices.

Continuous Evaluation and Benchmarking:

- Continuous evaluation and benchmarking of deduplication mechanisms are crucial
to monitor performance trends, identify bottlenecks, and assess the impact of
algorithmic changes and optimizations.

- Establishing standardized benchmarking frameworks, datasets, and evaluation
metrics can facilitate comparative analysis, reproducibility, and fair assessment of
deduplication algorithms across different research studies and implementations.

- Encouraging transparency, sharing of experimental results, and peer-reviewed
validation of deduplication techniques can foster trust, credibility, and rigor in the
evaluation and validation process, advancing the state-of-the-art in storage
optimization research.

138

CHAPTER FIVE CONCLUSION AND RECOMMENDATION

Real-world Deployment and Validation:

- Validating deduplication mechanisms in real-world production environments is
essential to assess their practicality, effectiveness, and suitability for deployment in
mission-critical storage systems.

- Future research should emphasize real-world deployment studies, field trials, and
case studies to evaluate the performance, reliability, and scalability of deduplication
mechanisms in diverse enterprise, cloud, and edge computing environments.

- Collaborating with industry partners, cloud service providers, and data center
operators can facilitate access to real-world datasets, infrastructure, and expertise,
enabling comprehensive validation and validation of deduplication solutions in
operational settings.

In conclusion, the aforementioned recommendations serve as guiding principles for
advancing the state-of-the-art in storage optimization and deduplication techniques.
By addressing key challenges, leveraging emerging technologies, and embracing
collaborative research and development efforts, the storage community can drive
innovation, efficiency, and sustainability in storage systems, paving the way for a
data-driven future.

5.3 Future Scope

The future researchers may have the scope to discuss in detail about the network cost
of the cloud storage system. They will have the opportunity to analyse the cost
required to be paid by the users in order to move data from cloud storage systems to
another location or the network. The future researchers will also have the scope to
focus on the data backup factor of the cloud storage network system. They will have
the opportunity to discuss the possible reasons for losing all the important data while
operating in the cloud-based storage system. They can also find the best possible
ways to allocate particular locations to particular information and data provided by
the users.

139

CHAPTER FIVE CONCLUSION AND RECOMMENDATION

The future researchers will have the scope to discuss how conscious duplication of
any data can affect the cloud storage system. They can also discuss the implications
of backup software in order to retain important data. They will have the opportunity
to concentrate on the concept of data migration. They will have the possibility to
explore the process of shifting from one cloud storage system to the by the users. It
will help the researchers to discuss various new aspects of implementing cloud
storage systems on the IOT environments.

140

REFERENCES

REFERENCES

REFERENCES

[1] Intel, Developing solutions for Internet of Things, White paper on Internet of

Things, www.intel.com/IoT.

[2] Junkin, V. Improving clinical reasoning skills by implementing the OPT model

[dissertation]. Tuscaloosa: University of Alabama; 2018.

[3] Erturk, E., & lles, H. R. E. (2015). Case study on cloud based library software as
a service: Evaluating EZproxy. arXiv preprint arXiv:1511.07578.

[4] Vermesan, O., & Friess, P. (Eds.). (2013). Internet of things: converging

technologies for smart environments and integrated ecosystems. River publishers.

[5] R. Vinoth and L. J. Deborah, “A survey on efficient storage and retrieval system

for the implementation of data deduplication in cloud,” SpringerLink,

https://link.springer.com/chapter/10.1007/978-3-030-43192-1_95

[6] Vestergaard, R., Zhang, Q., & Lucani, D. E. (2019, December). Lossless
compression of time series data with generalized deduplication. In 2019 IEEE
Global Communications Conference (GLOBECOM) (pp. 1-6). IEEE.

[7] Vijayalakshmi, K., & Jayalakshmi, V. (2021, April). Analysis on data
deduplication techniques of storage of big data in cloud. In 2021 5th International
Conference on Computing Methodologies and Communication (ICCMC) (pp. 976-
983). IEEE.

[8] Ellappan, M. (2021). Dynamic Prime Chunking Algorithm for Data
Deduplication in Cloud Storage. KSII Transactions on Internet & Information
Systems, 15(4).

142

REFERENCES

[9] Anitha, P., Dhanushram, R., Sudhan, D. H., & Indhresh, T. R. S. (2021, May).
Security Aware High Scalable paradigm for Data Deduplication in Big Data cloud
computing Environments. In Journal of Physics: Conference Series (Vol. 1916, No.
1, p. 012097). 10P Publishing.

[10] Xu, Z., & Zhang, W. (2021, September). Quickcdc: A quick content defined
chunking algorithm based on jumping and dynamically adjusting mask bits. In 2021
IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data &
Cloud Computing, Sustainable Computing & Communications, Social Computing
& Networking (ISPA/BDCloud/Social Com/SustainCom) (pp. 288-299). IEEE.

[11] Kumar, N., Shobha, & Jain, S. C. (2019). Efficient data deduplication for big
data storage systems. In Progress in Advanced Computing and Intelligent
Engineering: Proceedings of ICACIE 2017, Volume 2 (pp. 351-371). Springer

Singapore.

[12] Fan, Y., Lin, X., Liang, W., Tan, G., & Nanda, P. (2019). A secure privacy
preserving deduplication scheme for cloud computing. Future Generation
Computer Systems, 101, 127-135.

[13] H. A. Jasim and A. A. Fahad, New Techniques to Enhance Data Deduplication
using Content based-TTTD Chunking Algorithm , International Journal of
Advanced Computer Science and Applications, Vol. 9, No. 5, 2018

[14] Wu, H., Wang, C., Lu, K, Fu, Y., & Zhu, L. (2018, May). One size does not
fit all: The case for chunking configuration in backup deduplication. In 2018 18th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID) (pp. 213-222). IEEE.

143

REFERENCES

[15] Oh, M., Park, S., Yoon, J., Kim, S., Lee, K. W., Weil, S., ... & Jung, M. (2018).
Design of Global Data Deduplication for a Scale-Out Distributed Storage System.
IEEE 38th International Conference on Distributed Computing Systems (ICDCS),
2—6 July 2018, 1063-1073.

[16] Xia, W., Zhou, Y., Jiang, H., Feng, D., Hua, Y., Hu, Y., ... & Zhang, Y. (2016).
{FastCDC}: A fast and efficient {Content-Defined} chunking approach for data
deduplication. In 2016 USENIX Annual Technical Conference (USENIX ATC 16)
(pp. 101-114).

[17] Xu, X., & Tu, Q. (2015, September). Data deduplication mechanism for cloud
storage systems. In 2015 international conference on cyber-enabled distributed

computing and knowledge discovery (pp. 286-294). IEEE.

[18] Kirubakaran, R., Prathibhan, C. M., & Karthika, C. (2015, March). A cloud
based model for deduplication of large data. In 2015 IEEE international conference
on engineering and technology (ICETECH) (pp. 1-4). IEEE.

[19] Maruti, M. V., & Nighot, M. K. (2015, October). Authorized data Deduplication
using hybrid cloud technique. In 2015 International Conference on Energy Systems
and Applications (pp. 695-699). IEEE.

[20] Xu, X., Hu, N., & Tu, Q. (2016, October). Two-side data deduplication
mechanism for non-center cloud storage systems. In 2016 IEEE International
Conference on Ubiquitous Wireless Broadband (ICUWB) (pp. 1-4). IEEE.

[21] Zhang, Y., Jiang, H., Feng, D., Xia, W., Fu, M., Huang, F., & Zhou, Y. (2015,

April). AE: An asymmetric extremum content defined chunking algorithm for fast

144

REFERENCES

and bandwidth-efficient data deduplication. In 2015 IEEE Conference on Computer
Communications (INFOCOM) (pp. 1337-1345). IEEE.

[22] Leesakul, W., Townend, P., & Xu, J. (2014, April). Dynamic data deduplication
in cloud storage. In 2014 IEEE 8th International Symposium on Service Oriented
System Engineering (pp. 320-325). IEEE.

[23] Krishnaprasad, P. K., & Narayamparambil, B. A. (2013, August). A proposal
for improving data deduplication with dual side fixed size chunking algorithm. In
2013 Third International Conference on Advances in Computing and
Communications (pp. 13-16). IEEE.

[24] Luo, S., & Hou, M. (2013, December). A novel chunk coalescing algorithm for
data deduplication in cloud storage. In 2013 IEEE Jordan Conference on Applied
Electrical Engineering and Computing Technologies (AEECT) (pp. 1-5). IEEE.

[25] Xia, W., Zhou, Y., Jiang, H., Feng, D., Hua, Y., Hu, Y., ... & Zhang, Y. (2016).
{FastCDC}: A fast and efficient {Content-Defined} chunking approach for data
deduplication. In 2016 USENIX Annual Technical Conference (USENIX ATC 16)
(pp. 101-114).

[26] V. Balas C. Jain X. Zhao , Information Technology and Intelligent
Transportation Systems , Volume 2, 2015

[27] Begum, M. J., & Haritha, B. (2020). Data Deduplication Strategies in Cloud
Computing. International Journal of Innovative Science and Research Technology,
5(8), 734-738.

145

REFERENCES

[28] Burramukku, Tirapathi & Ramya, U. & Sekhar, M.V.P.. (2016). A comparative
study on data deduplication techniques in cloud storage. 8. 18521-18530.

[29] A. Venish and K. S. Sankar, "Study of chunking algorithm in data
deduplication," in Proc. of International Conference on Soft Computing Systems,
pp. 13-20, 2016.

[30] N. Bjorner, A. Blass, and Y. Gurevich, "Content-dependent chunking for
differential compression, the local maximum approach,” Journal of Computer and
System Sciences, wvol. 76, no. 3-4, pp. 154-203, 2010.
https://doi.org/10.1016/j.jcss.2009.06.004

[31] M. Rabin, “Fingerprinting by random polynomials, no. tr-15-81,” Cambridge,
MA, USA: Center for Research in Computing Techn., Aiken Computation
Laboratory, Harvard Univ, pp. 15-18, 1981.

[32] R. Raju, M. Moh, and T. Moh, “Compression of wearable body sensor network
data using improved two-threshold-two-divisor data chunking algorithms,” in 2018
International Conference on High Performance Computing Simulation (HPCS), July
2018, pp. 949-956.

[33] N. Bjerner, A. Blass, and Y. Gurevich, “Content-dependent chunking for

differential compression, the local maximum approach,” J. Comput. Syst. Sci., vol.
76, no. 34, pp. 154-203, May 2010. [Online]. Available:
http://dx.doi.org/10.1016/}.jcss.2009.06.004

[34] Y. Zhang, D. Feng, H. Jiang, W. Xia, M. Fu, F. Huang, and Y. Zhou, “A fast

asymmetric extremum content defined chunking algorithm for data deduplication in

146

REFERENCES

backup storage systems,” IEEE Transactions on Computers, vol. 66, no. 2, pp. 199—
211, Feb 2017

[35] R. N. S. Widodo, H. Lim, and M. Atiquzzaman, “A new content-defined
chunking algorithm for data deduplication in cloud storage,” Future Generation

Computer Systems, vol. 71, pp. 145-156, 2017

[36] Y. Tan and Z. Yan, “Multi-objective metrics to evaluate deduplication
approaches,” IEEE Access, vol. 5, pp. 5366-5377, 2017

[37] W. Tian, R. Li, Z. Xu, and W. Xiao, “Does the content defined chunking really
solve the local boundary shift problem?” in 2017 IEEE 36th International
Performance Computing and Communications Conference (IPCCC), Dec 2017, pp.
1-8

[38] C. Zhang, D. Qi, Z. Cai, W. Huang, X. Wang, W. Li, and J. Guo, “Mii: A novel
content defined chunking algorithm for finding incremental data in data
synchronization,” IEEE Access, vol. 7, pp. 86 932-86 945, 20109.

[39] B. Chapuis, B. Garbinato, and P. Andritsos, “Throughput: A key performance
measure of content-defined chunking algorithms,” in 2016 IEEE 36th International
Conference on Distributed Computing Systems Workshops (ICDCSW), June 2016,
pp. 7-12

[40] Habeeb, Ahmed. (2018). Introduction to Secure Hash Algorithms.
10.13140/RG.2.2.11090.25288.

147

REFERENCES

[41] Lopez, C. C., Crama, Y., Pironet, T., & Semet, F. (2024). Multi-period
distribution networks with purchase commitment contracts. European Journal of
Operational Research, 312(2), 556-572.

[42] Kumar, A., de Jesus Pacheco, D. A., Kaushik, K., & Rodrigues, J. J. P. C.
(2022). Futuristic view of the internet of quantum drones: review, challenges and
research agenda. Veh. Commun. 36, 100487 (2022).

[43] Guimardes, A., Aranha, D. F., & Borin, E. (2019). Optimized implementation
of QC-MDPC code-based cryptography. Concurrency and Computation: Practice
and Experience, 31(18), €5089.

[44] Drucker, N., Gueron, S., & Kostic, D. (2020, June). Fast polynomial inversion
for post quantum QC-MDPC cryptography. In International Symposium on Cyber
Security Cryptography and Machine Learning (pp. 110-127). Cham: Springer

International Publishing.

[45] H. Guesmi and L. A. Saidane, "Improved Data Storage Confidentiality in Cloud
Computing Using Identity-Based Cryptography,” 2017 25th International
Conference on Systems Engineering (ICSEng), Las Vegas, NV, USA, 2017, pp.
324-330, doi: 10.1109/1CSEng.2017.32.

[46] Lee, H. N., Kim, Y. S., Singh, D., & Kaur, M. (2022). Green Bitcoin: Global
Sound Money. arXiv preprint arXiv:2212.13986.

[47] Kumar, S., Banka, H., Kaushik, B., & Sharma, S. (2021). A review and analysis
of secure and lightweight ECC-based RFID authentication protocol for Internet of
Vehicles. Transactions on Emerging Telecommunications Technologies, 32(11),
e4354.

148

REFERENCES

[48] Thalapala, V. S., Mohan, A., & Guravaiah, K. (2022). Woaccpp: Wisdom of
artificial crowds for controller placement problem with latency and reliability in

sdn-wan.

[49] Rahimi, S., Jackson, R., Farahibozorg, S. R., & Hauk, O. (2023). Time-
Lagged Multidimensional Pattern Connectivity (TL-MDPC): An EEG/MEG
pattern transformation based functional connectivity metric. Neurolmage, 270,
119958.

[50] Jamali, S., Talebi, M. M., & Fotohi, R. (2021). Congestion control in high-
speed networks using the probabilistic estimation approach. International

Journal of Communication Systems, 34(7), e4766.

[51] Aravkin, A., Kumar, R., Mansour, H., Recht, B., & Herrmann, F. J. (2014). Fast
methods for denoising matrix completion formulations, with applications to robust
seismic data interpolation. SIAM Journal on Scientific Computing, 36(5), S237-
S266.

[52] Jamali, S., Talebi, M. M., & Fotohi, R. (2021). Congestion control in high-
speed networks using the probabilistic estimation approach. International Journal
of Communication Systems, 34(7), e4766.

[53] Gill, S. S., Kumar, A., Singh, H., Singh, M., Kaur, K., Usman, M., & Buyya,

R. (2022). Quantum computing: A taxonomy, systematic review and future
directions. Software: Practice and Experience, 52(1), 66-114.

[54] Xie, H., Qin, Z., Li, G. Y., & Juang, B. H. (2021). Deep learning enabled
semantic communication systems. IEEE Transactions on Signal Processing, 69,
2663-2675.

149

REFERENCES

[55] Aragon, N., Gaborit, P., Hauteville, A., Ruatta, O., & Zémor, G. (2019). Low
rank parity check codes: New decoding algorithms and applications to cryptography.
IEEE Transactions on Information Theory, 65(12), 7697-7717.

[56] Ravi, P., Najm, Z., Bhasin, S., Khairallah, M., Gupta, S. S., & Chattopadhyay,
A. (2019). Security is an architectural design constraint. Microprocessors and

microsystems, 68, 17-27.

[57] Eshghi, K., & Tang, H. K. (2005). A framework for analyzing and improving
content-based chunking algorithms. Hewlett-Packard Labs Technical Report TR,
30(2005).

[58] Zhang, Y., Jiang, H., Feng, D., Xia, W., Fu, M., Huang, F., & Zhou, Y. (2015,
April). AE: An asymmetric extremum content defined chunking algorithm for fast
and bandwidth-efficient data deduplication. In 2015 IEEE Conference on Computer
Communications (INFOCOM) (pp. 1337-1345). IEEE.

[59] N. A. Et al., “An enhanced approach to improve the security and performance
for deduplication,” Turkish Journal of Computer and Mathematics Education
(TURCOMAT), vol. 12, no. 6, pp. 2866-2882, 2021.
doi:10.17762/turcomat.v12i6.5797

[60] Vuong, H., Nguyen, H., & Tran, L. (2022). A Design of Parallel Content-
Defined Chunking System Using Non-Hashing Algorithms on FPGA. IEEE Access,
10, 82036-82048.

[61] Saranya, R., Vidhya, S., Muthumari, M., & Sangeerthana, B. Data
Deduplication in Cloud by Chunking.

150

REFERENCES

[62] M. Mister, “10 advantages and disadvantages of cloud storage,” Organize and

Access Files From Anywhere, https://www.promax.com/blog/10-advantages-and-

disadvantages-of-cloud-storage

[63] Viji, D., & Revathy, S. (2021). Comparative analysis for content defined
chunking algorithms in data deduplication. Webology, 18(Speciallssue2), 255-268.

[64] u-next.com, “Top 10 advantages and disadvantages of cloud storage: Unext,”

UNext, https://u-next.com/blogs/cloud-computing/top-10-advantages-and-

disadvantages-of-cloud-storage/

[65] A. S. Gillis, “What is IOT (internet of things) and how does it work? - definition
from techtarget.com,” IoT Agenda,

https://www.techtarget.com/iotagenda/definition/Internet-of-Things-loT

[66] Xia, W., Zou, X., Jiang, H., Zhou, Y., Liu, C., Feng, D., ... & Zhang, Y. (2020).
The design of fast content-defined chunking for data deduplication based storage
systems. IEEE Transactions on Parallel and Distributed Systems, 31(9), 2017-2031.
[67] Viji, D., & Revathy, S. (2021). Comparative analysis for content defined
chunking algorithms in data deduplication. Webology, 18(Speciallssue2), 255-268.

[68] Yoon, M. (2019). A constant-time chunking algorithm for packet-level
deduplication. ICT Express, 5(2), 131-135.

[69] Vuong, H., Nguyen, H., & Tran, L. (2022). A Design of Parallel Content-
Defined Chunking System Using Non-Hashing Algorithms on FPGA. IEEE Access,
10, 82036-82048.

[70] Jeong, Y. S., & Park, J. H. (2018). Advanced data processing, optimization &

software engineering. Journal of Information Processing Systems, 14(5), 1063-1067.

151

https://www.promax.com/blog/10-advantages-and-disadvantages-of-cloud-storage
https://www.promax.com/blog/10-advantages-and-disadvantages-of-cloud-storage
https://u-next.com/blogs/cloud-computing/top-10-advantages-and-disadvantages-of-cloud-storage/
https://u-next.com/blogs/cloud-computing/top-10-advantages-and-disadvantages-of-cloud-storage/
https://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT

REFERENCES

[71] Jeong, Y. S., & Park, J. H. (2018). Advanced data processing, optimization &
software engineering. Journal of Information Processing Systems, 14(5), 1063-
1067.

[72] Saeed, A. S. M., & George, L. E. (2020). Data deduplication system based on
content-defined chunking using bytes pair frequency occurrence. Symmetry,
12(11), 1841.

[73] www.zdnet.com, “What is the iot? everything you need to know about the
internet of things right now,” ZDNET, https://www.zdnet.com/article/what-is-the-

internet-of-things-everything-you-need-to-know-about-the-iot-right-now/

[74] Yash Arora . May 27th, I. S. Ganiyu, Y. Arora, and K. Tolety,
“Data Segmentation in data mining: Strategy talks & more,” Hevo,

https://hevodata.com/learn/data-segmentation-in-data-mining/ .

[75] S. Hiter, “What is data segmentation?: Datamation: Security,” Datamation,

https://www.datamation.com/security/data-segmentation/ .

[76] lliev, 1., Sulikovska, 1., Ivanova, E., Dimitrova, M., Nikolova, B., &
Andreeva, C. (2022). Validation of a Light Source for Phototoxicity in in vitro

Conditions. International Journal Bioautomation, 26(2), 141.

[77] C. S. N. Koushik, S. B. Choubey, A. Choubey, and G. R. Sinha, “Study of data
deduplication for file chunking approaches,” Data Deduplication Approaches, pp.
111-124, 2021. doi:10.1016/b978-0-12-823395-5.00008-2

[78] G.R. Sinha, Tin Thein Thwel, Samrudhi Mohdiwale, and Divya Prakash

Shrivastava, "Data Deduplication Approaches: Concepts, Strategies, and

152

https://hevodata.com/learn/data-segmentation-in-data-mining/
https://www.datamation.com/security/data-segmentation/

REFERENCES

Challenges,” in Data Deduplication Approaches, 2021, pp. 1-15.
https://doi.org/10.1016/B978-0-12-823395-5.00019-7

[79] K. Vijayalakshmi and V. Jayalakshmi, "Analysis on data deduplication

techniques of storage of big data in cloud," in International Conference.

[80] Srinivasan, Karthik, et al. "Secure multimedia data processing scheme in

medical applications.”" Multimedia Tools and Applications (2022): 1-12.

[81] Kumari, Aparna, and Sudeep Tanwar. "A secure data analytics scheme for
multimedia communication in a decentralized smart grid." Multimedia Tools and
Applications 81.24 (2022): 34797-34822.

[82] Dhar, Shalini, Ashish Khare, and Rajani Singh. "Advanced security model for
multimedia data sharing in Internet of Things." Transactions on Emerging
Telecommunications Technologies 34.11 (2023): e4621.

[83] Sharma, Neha, Chinmay Chakraborty, and Rajeev Kumar. "Optimized
multimedia data through computationally intelligent algorithms." Multimedia
Systems 29.5 (2023): 2961-2977.

153

https://doi.org/10.1016/B978-0-12-823395-5.00019-7

REFERENCES

154

